题目内容
某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.
(1)上表是年龄的频率分布表,求正整数的值;
(2)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(3)在(2)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求恰有1人年龄在第3组的概率.
(1);(2)第1,2,3组分别抽取1人,1人,4人;(3).
解析试题分析:本题考查频率分布直方图的读法、分层抽样以及随机事件的概率等基础知识,考查学生的分析能力和计算能力.第一问,根据频率分布直方图求频率;第二问,考查分层抽样,利用样本容量比总容量的比例计算;3.利用第2问的结论,列出所有可能情况,在其中挑出符合题意的情况,求比值.
试题解析:(1)由频率分布直方图可知,, 2分
. 4分
(2) 因为第1,2,3组共有50+50+200=300人,利用分层抽样在300名学生中抽取名学生,每组抽取的人数分别为:
第1组的人数为, 5分
第2组的人数为, 6分
第3组的人数为, 7分
所以第1,2,3组分别抽取1人,1人,4人. 8分
(3)设第1组的1位同学为,第2组的1位同学为,第3组的4位同学为,则从六位同学中抽两位同学有:
共种可能. 10分
其中恰有1人年龄在第3组有8种可能, 12分
所以恰有1人年龄在第3组的概率为 13分
考点:1.频率分布直方图;2.分层抽样;3.随机事件的概率.
改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,……,2005年编号为5,数据如下:
年份(x) | 1 | 2 | 3 | 4 | 5 |
人数(y) | 3 | 5 | 8 | 11 | 13 |
(2)根据这年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值。
参考:用最小二乘法求线性回归方程系数公式
为预防H7N9病毒爆发,某生物技术公司研制出一种H7N9病毒疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个样本分成三组,测试结果如下表:
分组 | A组 | B组 | C组 |
疫苗有效 | 673 | ||
疫苗无效 | 77 | 90 |
(1)现用分层抽样的方法在全体样本中抽取360个测试结果,应在C组抽取样本多少个?
(2)已知求通过测试的概率.
某校高三4班有50名学生进行了一场投篮测试,其中男生30人,女生20人.为了了解其投篮成绩,甲、乙两人分别都对全班的学生进行编号(1~50号),并以不同的方法进行数据抽样,其中一人用的是系统抽样,另一人用的是分层抽样.若此次投篮考试的成绩大于或等于80分视为优秀,小于80分视为不优秀,以下是甲、乙两人分别抽取的样本数据:
编号 | 性别 | 投篮成绩 |
2 | 男 | 90 |
7 | 女 | 60 |
12 | 男 | 75 |
17 | 男 | 80 |
22 | 女 | 83 |
27 | 男 | 85 |
32 | 女 | 75 |
37 | 男 | 80 |
42 | 女 | 70 |
47 | 女 | 60 |
编号 | 性别 | 投篮成绩 |
1 | 男 | 95 |
8 | 男 | 85 |
10 | 男 | 85 |
20 | 男 | 70 |
23 | 男 | 70 |
28 | 男 | 80 |
33 | 女 | 60 |
35 | 女 | 65 |
43 | 女 | 70 |
48 | 女 | 60 |
(Ⅰ)观察乙抽取的样本数据,若从男同学中抽取两名,求两名男同学中恰有一名非优秀的概率.
(Ⅱ)请你根据乙抽取的样本数据完成下列2×2列联表,判断是否有95%以上的把握认为投篮成绩和性别有关?
| 优秀 | 非优秀 | 合计 |
男 | | | |
女 | | | |
合计 | | | 10 |
下面的临界值表供参考:
0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |