题目内容

已知角θ∈(0,
π
2
)
,且满足条件sinθ+cosθ=
3
+1
2
sinθcosθ=
m
2

求:(Ⅰ)
sinθ
1-
1
tanθ
+
cosθ
1-tanθ
的值;
(Ⅱ)m的值与此时θ的值.
分析:(Ⅰ)把要求的式子切化弦可得
sinθ
sinθ-cosθ
sinθ
+
cosθ
cosθ-sinθ
cosθ
,同分可得
sin2θ-cos2θ
sinθ-cosθ
=sinθ+cosθ,由
已知条件得到结果.
(Ⅱ)把sinθ+cosθ=
3
+1
2
  平方可得 sinθ cosθ  的值,由此求得 m 的值,根据 sinθ 和 cosθ  一个等于
3
2
,另一个等于
1
2
,求出θ 的值等.
解答:解:(Ⅰ)
sinθ
1-
1
tanθ
+
cosθ
1-tanθ
=
sinθ
sinθ-cosθ
sinθ
+
cosθ
cosθ-sinθ
cosθ
=
sin2θ
sinθ-cosθ
-
cos2θ
cosθ-sinθ
 
=
sin2θ-cos2θ
sinθ-cosθ
=sinθ+cosθ=
3
+1
2

(Ⅱ)把sinθ+cosθ=
3
+1
2
  平方可得 1+2sinθ cosθ=
4+2
3
4
,∴sinθ cosθ=
3
4

m
2
=
3
4
,∴m=
3
2
.  此时,sinθ 和 cosθ  一个等于
3
2
,另一个等于
1
2

故θ 的值等于
π
6
 或
π
3
点评:本题考查同角三角函数的基本关系的应用,得到sinθ 和 cosθ  一个等于
3
2
,另一个等于
1
2
,是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网