题目内容
已知a>0,函数f(x)=x3-ax在[1,+∞)上是单调增函数,则a的最大值是( )
A.0 B.1 C.2 D.3
D
【解析】
.(本小题满分12分)
已知函數f(x)=ln+mx2(m∈R)
(I)求函数f(x)的单调区间;
(II)若m=0,A(a,f(a))、B(b,f(b))是函数f(x)图象上不同的两点,且a>b>0, 为f(x)的导函数,求证:
(III)求证
已知函数f(x)=loga(ax-1)(a>0且a≠1)
(1)求f(x)的定义域;
(2)讨论f(x)的单调性;
(3)x为何值时,函数值大于1.
已知函数f(x)=a-是偶函数,a为实常数.
(1)求b的值;
(2)当a=1时,是否存在n>m>0,使得函数y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],若存在,求出m,n的值,否则,说明理由.
(3)若在函数定义域内总存在区间[m,n](m<n),使得y=f(x)在区间[m,n]上的函数值组成的集合也是[m,n],求实数a的取值范围.
已知指函数ƒ(x)=ax(a>0,且a≠1)自变量与函数值 的部分对应值如右表:
那么a=_____;若函数y=x[ƒ(x)-2],则满足条件y>0的x的集合为___________________.
x
-1
0
2
ƒ(x)
1
0.25