题目内容

已知ABCD-A1B1C1D1是底面边长为1的正四棱柱,高AA1=2,
求(1)异面直线BD与AB1所成角的大小(结果用反三角函数值表示).
(2)求点C到平面BDC1的距离及直线B1D与平面CDD1C1所成的角.
分析:通过建立空间直角坐标系,(1)利用异面直线的方向向量所成的夹角即可得出;(2)求出平面BDC1的法向量,利用点C到平面BDC1的距离公式d=
|
n
BC
|
|
n
|
即可得出;
(3)求出平面CDD1C1的法向量,利用sinθ=|cos<
B1D
A1D1
>|
=
|
B1D
A1D1
|
|
B1D
| |
A1D1
|
即可得出.
解答:解:(1)如图所示,建立空间直角坐标系.
则A1(0,0,0),B1(1,0,0),C1(1,1,0),D1(0,1,0),A(0,0,2),B(1,0,2),C(1,1,2),D(0,1,2),
BD
=(-1,1,0)
AB1
=(1,0,-2).
cos<
BD
AB1
=
BD
AB1
|
BD
| |
AB1
|
=
-1
2
5
=-
10
10

∴异面直线BD与AB1所成角=arccos
10
10

(2)由(1)可知:
BC
=(0,1,0)
C1D
=(-1,0,2)

设平面BDC1的法向量为
n
=(x,y,z)

n
BD
=0
n
C1D
=0
,即
-x+y=0
-x+2z=0
,令z=1,则x=2,y=2.
n
=(2,2,1)

∴点C到平面BDC1的距离d=
|
n
BC
|
|
n
|
=
2
9
=
2
3

(3)由(1)可知:
B1D
=(-1,1,2).
∵A1D1⊥平面CDD1C1,∴可取
A1D1
=(0,1,0)作为平面CDD1C1的法向量.
设直线B1D与平面CDD1C1所成的角为θ.
则sinθ=|cos<
B1D
A1D1
>|
=
|
B1D
A1D1
|
|
B1D
| |
A1D1
|
=
1
6
×1
=
6
6
点评:熟练掌握通过建立空间直角坐标系、由异面直线的方向向量所成的夹角求异面直线所成的角、点C到平面BDC1的距离公式d=
|
n
BC
|
|
n
|
、由sinθ=|cos<
B1D
A1D1
>|
=
|
B1D
A1D1
|
|
B1D
| |
A1D1
|
求线面角是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网