题目内容
已知椭圆过点,且离心率。
(Ⅰ)求椭圆方程;
(Ⅱ)若直线与椭圆交于不同的两点、,且线段的垂直平分线过定点,求的取值范围。
(Ⅰ)椭圆方程为
(Ⅱ)
解析试题分析:(Ⅰ)设出椭圆的方程,结合离心率公式和点的坐标得到a,b的关系式,进而求解得到方程。
(Ⅱ)联立直线与椭圆的方程,结合韦达定理表示出根与系数的关系,结合斜率狗狗是得到m,k的表达式,进而结合判别式得到范围。
解:(Ⅰ)离心率,,即(1);
又椭圆过点,则,(1)式代入上式,解得,,
椭圆方程为。-------4分
(Ⅱ)设,弦MN的中点A
由得:,------------6分
直线与椭圆交于不同的两点,
,即……(1)--------8分
由韦达定理得:,
则,-------------10分
直线AG的斜率为:,
由直线AG和直线MN垂直可得:,即,----12分
代入(1)式,可得,即,则---14分
考点:本题主要考查了直线与椭圆的位置关系的运用。
点评:解决该试题的关键是能够利用椭圆的几何性质准确表述出a,b,c的关系式及而求解得到椭圆方程,同时联立方程组,结合韦达定理是我们解析几何的常用的解题方法。
练习册系列答案
相关题目
已知椭圆,抛物线的焦点均在轴上,的中心和的顶点均为坐标原点,从每条曲线上各取两个点,将其坐标记录于表中:
(1)求的标准方程;
(2)请问是否存在直线同时满足条件:(ⅰ)过的焦点;(ⅱ)与交于不同两点、,且满足.若存在,求出直线的方程;若不存在,请说明理由.