题目内容
已知三棱锥V-ABC,底面是边长为2的正三角形,VA⊥底面△ABC,VA=2,D是VB中点,则异面直线VC、AD所成角的大小为 (用反三角函数表示).
【答案】分析:先根据题意作出图形,取BC的中点E,连接AE,DE,得出∠ADE是异面直线VC、AD所成角,在△ADE中,由余弦定理得cos∠ADE从而得出异面直线VC、AD所成角的大小为.
解答:
解:取BC的中点E,连接AE,DE,
则DE∥VC,故∠ADE是异面直线VC、AD所成角,
在△ADE中,AD=
.DE=
VC=
,AE=
,
由余弦定理得:cos∠ADE=
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182820041988294/SYS201310241828200419882008_DA/5.png)
∴∠ADE=
,
则异面直线VC、AD所成角的大小为
,
故答案为:
(等).
点评:本小题主要考查异面直线所成角、反三角函数的运用、解三角形等基础知识,考查运算求解能力,考查空间想象力.属于基础题.
解答:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182820041988294/SYS201310241828200419882008_DA/images0.png)
则DE∥VC,故∠ADE是异面直线VC、AD所成角,
在△ADE中,AD=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182820041988294/SYS201310241828200419882008_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182820041988294/SYS201310241828200419882008_DA/1.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182820041988294/SYS201310241828200419882008_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182820041988294/SYS201310241828200419882008_DA/3.png)
由余弦定理得:cos∠ADE=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182820041988294/SYS201310241828200419882008_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182820041988294/SYS201310241828200419882008_DA/5.png)
∴∠ADE=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182820041988294/SYS201310241828200419882008_DA/6.png)
则异面直线VC、AD所成角的大小为
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182820041988294/SYS201310241828200419882008_DA/7.png)
故答案为:
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024182820041988294/SYS201310241828200419882008_DA/8.png)
点评:本小题主要考查异面直线所成角、反三角函数的运用、解三角形等基础知识,考查运算求解能力,考查空间想象力.属于基础题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目