题目内容
双曲线的渐近线的方程是( )
A. | B. | C. | D. |
C
解析试题分析:由双曲线的标准方程可知,即,该双曲线的焦点在轴上,所以该双曲线的渐近线方程为,故选C.
考点:双曲线的标准方程及其几何性质.
练习册系列答案
相关题目
设P是双曲线上一点,该双曲线的一条渐近线方程是,分别是双曲线的左、右焦点,若,则等于 ( )
A.2 | B.18 | C.2或18 | D.16 |
若抛物线y2=2px(p>0)的焦点在圆x2+y2+2x-3=0上,则p=( )
A. | B.1 | C.2 | D.3 |
已知双曲线=1(a>0,b>0)的左、右焦点分别为F1,F2,点O为双曲线的中心,点P在双曲线右支上,△PF1F2内切圆的圆心为Q,圆Q与x轴相切于点A,过F2作直线PQ的垂线,垂足为B,则下列结论成立的是( )
A.|OA|>|OB| | B.|OA|<|OB| |
C.|OA|=|OB| | D.|OA|与|OB|大小关系不确定 |
以抛物线y2=8x上的任意一点为圆心作圆与直线x+2=0相切,这些圆必过一定点,则这一定点的坐标是( )
A.(0,2) | B.(2,0) |
C.(4,0) | D.(0,4) |