题目内容

计算:(1)
-2
3
+i
1+2
3i
+(2+i15)-(
1+i
2
)
22

(2)
(1-
3
i)
15
-(1+
3
i)
6
2i(-1+i12(
1
2
+
1
2
i) 
4

(3)1+2i+3i2+…+1000i999
分析:利用ω3=
.
ω
3=1,ω+
.
ω
=-1,ω
.
ω
=1,ω2=
.
ω
.
ω
2=ω,|ω|=|
.
ω
|=1,1+ω+ω2=0,1+
.
ω
+
.
ω
2=0
这些性质中(ω=-
1
2
+
3
2
i);(1±i)2=±2i,
1-i
1+i
=-i
1+i
1-i
=i
解答(1)(2).利用i的幂的周期性解答(3).
解答:解:(1)原式=
i(1+2
3
i)
1+2
3
i
+(2-i)-(
2i
2
)
11

=i+2-i-(-i)
=2+i
(2)原式=
[-2(-
1
2
+
3
2
i)]
15
-[-2(-
1
2
-
3
2
i)]
6
2i(1-i)12
1
24
(1+i)4

=
-215[(-
1
2
+
3
2
i)
3
]
5
-26[(-
1
2
-
3
2
i)
3
]
2
2i(-2i)6
1
24
(2i)2

=
-215-26
25•i
=
-25(210+2)
25•i
=1026i

(3)解法1:原式=(1+2i-3-4i)+(5+6i-7-8i)+…+(997+998i-999-1000i)
=250(-2-2i)=-500-500i
解法2:设S=1+2i+3i2+…+1000i999
则iS=i+2i2+3i3+…+999i999+1000i1000
∴(1-i)S=1+i+i2+…+i999-1000i1000
=
1-i1000
1-i
-1000=-1000
∴S=
-1000
1-i
=-500-500i.
点评:(1)计算时要注意提取公因式,要注意利用i的幂的周期性.
(2)重视利用ω3=
.
ω
3=1,ω+
.
ω
=-1,ω
.
ω
=1,ω2=
.
ω
.
ω
2=ω,|ω|=|
.
ω
|=1,1+ω+ω2=0,1+
.
ω
+
.
ω
2=0
这些性质(ω=-
1
2
+
3
2
i);要记住常用的数据:(1±i)2=±2i,
1-i
1+i
=-i
1+i
1-i
=i

(3)充分利用i的幂的周期性进行组合,注意利用等比数列求和的方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网