题目内容
设x、y为非负实数,且x2+y2=4,u=xy-4(x+y)+10,那么u的最值情况是( )A.最大值2,最小值2(2-)2 B.最大值2,最小值0
C.最大值10,最小值2(2-)2 D.最值不存在
解析:令x=2cosθ,y=2sinθ,θ∈[0,].
∴u=4sinθcosθ-8(sinθ+cosθ)+10.
令t=sinθ+cosθ=sin(θ+)∈[1,],
u=2(t2-1)-8t+10=2(t-2)2,
∴umax=2,umin=2(2-)2.
答案:A
练习册系列答案
相关题目