题目内容
(2009全国卷Ⅰ理)(本小题满分12分)(注意:在试题卷上作答无效)
如图,四棱锥中,底面为矩形,底面, ,点M在侧棱上,=60°
(I)证明:M在侧棱的中点
(II)求二面角的大小。
(I)解法一:作∥交于N,作交于E,
连ME、NB,则面,,
设,则,
在中,。
在中由
解得,从而 M为侧棱的中点M.
解法二:过作的平行线.
解法三:利用向量处理. 详细可见09年高考参考答案.
(II)分析一:利用三垂线定理求解。在新教材中弱化了三垂线定理。这两年高考中求二面角也基本上不用三垂线定理的方法求作二面角。
过作∥交于,作交于,作交于,则∥,面,面面,面即为所求二面角的补角.
分析二:利用二面角的定义。在等边三角形中过点作交于点,则点为AM的中点,取SA的中点G,连GF,易证,则即为所求二面角.
分析三:利用空间向量求。在两个半平面内分别与交线AM垂直的两个向量的夹角即可。
另外:利用射影面积或利用等体积法求点到面的距离等等,这些方法也能奏效。
总之在目前,立体几何中的两种主要的处理方法:传统方法与向量的方法仍处于各自半壁江山的状况。命题人在这里一定会照顾双方的利益。
练习册系列答案
相关题目