题目内容
从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张卡片上的字母恰好是按字母顺序相邻的概率为分析:任取2张,总共可能共10种,先找出按字母顺序相邻的情况数目,再利用概率计算公式求其发生的概率的大小.
解答:解:5张卡片中,任取2张的种数是C52=10,
而字母恰好是按字母顺序相邻的有:4种,
∴恰好是按字母顺序相邻的概率=
=
.
故填:
.
而字母恰好是按字母顺序相邻的有:4种,
∴恰好是按字母顺序相邻的概率=
4 |
10 |
2 |
5 |
故填:
2 |
5 |
点评:本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
.
m |
n |
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
从分别写有A、B、C、D、E的5张卡片中,任取2张,这2张上的字母恰好按字母顺序相邻的概率为( )
A、
| ||
B、
| ||
C、
| ||
D、
|