题目内容

精英家教网如图,在中△ABC,∠CBA=∠CAB=30°,AC、BC边上的高分别为BD、AE,则以A、B为焦点,且过D、E的椭圆与双曲线的离心率的倒数和为(  )
A、
3
B、1
C、2
3
D、2
分析:根据题意设出AB,进而根据椭圆的定义可求得a和c的关系式,求得椭圆的离心率.进而利用双曲线的性质,求得a和c关系,求得双曲线的离心率,然后求得二者离心率倒数和.
解答:解:设|AB|=2c,则在椭圆中,有c+
3
c=2a,
1
e1
=
c
a
=
1+
3
2

而在双曲线中,有
3
c-c=2a,
1
e2
=
a
c
=
3
-1
2

1
e1
+
1
e2
=
1+
3
2
+
3
-1
2
=
3

故选A
点评:本题主要考查了椭圆的简单性质和双曲线的简单性质.解题中灵活 运用了椭圆的简单性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网