题目内容

对于函数,若存在区间,使得,则称区间为函数的一个好区间.给出下列4个函数:

其中存在好区间的函数是 .(填入所有满足条件函数的序号)

 

【答案】

②③④

【解析】

试题分析:①函数上是单调增函数,若函数在上存“好区间”则必有,即方程 有两个根,令

上恒成立,所以函数上为减函数,则函数上至多一个零点,即方程上不可能有两个解,又因为函数的值域为,所以当时,方程无解.所以函数没有“好区间”;

对于函数,该函数在上是增函数由幂函数的性质我们易得,时, ,所以为函数的一个“好区间”.

对于函数,所以函数的增区间有,减区间是,取,此时,所以函数上的值域了是,则为函数的一个“好区间”;

函数在定义域上为增函数,若有“好区间” 也就是函数有两个零点,显然是函数的一个零点,由

得,,函数上为减函数;由,得,函数在上为增函数.所以的最大值为,则该函数

上还有一个零点.所以函数存在“好区间”.

考点:1、函数的单调性;2、函数的零点3、函数的定义域和值域.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网