题目内容
设命题p:函数f(x)=lg(ax2-x+
a)的定义域为R;命题q:不等式3x-9x<a对一切正实数均成立.如果命题“p或q”为真命题,且“p且q”为假命题,则实数a的取值范围是( )
1 |
4 |
A、(1,+∞) |
B、[0,1] |
C、[0,+∞) |
D、(0,1) |
分析:根据题意,命题p、q有且仅有一个为真命题,分“p真q假”和“p假q真”两种情况加以讨论,即可得出a的取值范围.
解答:解:若命题p为真,即ax2-x+
a>0恒成立.则
,有
,∴a>1.
令y=3x-9x=-(3x-
)2+
,由x>0得3x>1,∴y=3x-9x的值域为(-∞,0).
∴若命题q为真,则a≥0.由命题“p或q”为真,且“p且q”为假,得命题p、q一真一假.当p真q假时,a不存在;当p假q真时,0≤a≤1.
故选B
1 |
4 |
|
|
令y=3x-9x=-(3x-
1 |
2 |
1 |
4 |
∴若命题q为真,则a≥0.由命题“p或q”为真,且“p且q”为假,得命题p、q一真一假.当p真q假时,a不存在;当p假q真时,0≤a≤1.
故选B
点评:本题考查对函数的定义域理解以及对命题的真假进行判断,属于中档题.解题时注意分类讨论思想的应用.
练习册系列答案
相关题目