题目内容

精英家教网如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(1)设AD=x(x≥0),ED=y,求用x表示y的函数关系式;
(2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请予证明.
分析:(1)先根据S△ADE=
1
2
S△ABC求得x和AE的关系,进而根据余弦定理把x和AE的关系代入求得x和y的关系.
(2)根据均值不等式求得y的最小值,求得等号成立时的x的值,判断出DE∥BC,且DE=
2
.进而可得函数f(x)的解析式,根据其单调性求得函数的最大值.
解答:解(1)在△ADE中,y2=x2+AE2-2x•AE•cos60°?y2=x2+AE2-x•AE,①
又S△ADE=
1
2
S△ABC=
3
2
22=
1
2
x•AE•sin60°?x•AE=2.②
②代入①得y2=x2+(
2
x
)2
-2(y>0),
∴y=
x2+
4
x2
-2
(1≤x≤2);
(2)如果DE是水管y=
x2+
4
x2
-2
2•2-2
=
2

当且仅当x2=
4
x2
,即x=
2
时“=”成立,故DE∥BC,且DE=
2

如果DE是参观线路,记f(x)=x2+
4
x2

可知函数在[1,
2
]上递减,在[
2
,2]上递增,
故f(x)max=f(1)=f(2)=5.∴ymax=
5-2
=
3

即DE为AB中线或AC中线时,DE最长.
点评:本题主要考查了基本不等式.考查了学生运用所学知识解决实际问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网