题目内容
已知数列的首项为a1=2,前n项和为Sn,且对任意的n∈N*,当n≥2时,an总是3Sn-4与2-
Sn-1的等差中项.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(n+1)an,Tn是数列{bn}的前n项和,n∈N*,求Tn;
(Ⅲ)设cn=
,Pn是数列{cn}的前项和,n∈N*,试证明:Pn<
.
5 |
2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=(n+1)an,Tn是数列{bn}的前n项和,n∈N*,求Tn;
(Ⅲ)设cn=
3an |
4•2n-3n-1•an |
3 |
2 |
分析:(Ⅰ)当n≥2时2an=(3Sn-4)+(2-
Sn-1),由此能导出数列{an}是首项是2,公比是
的等比数列,从而能求出数列{an}的通项公式.
(Ⅱ)由an=
,知Tn=b1+b2+…bn=2×
+3×
+4×
+…+(n+1)
,利用错位相减法能求出Tn.
(Ⅲ)由cn=
=
=
=
<
,能够证明Pn<
.
5 |
2 |
1 |
2 |
(Ⅱ)由an=
1 |
2n-2 |
1 |
2-1 |
1 |
20 |
1 |
21 |
1 |
2n-2 |
(Ⅲ)由cn=
3an |
4•2n-3n-1•an |
3 |
4n-3n-1 |
9 |
3•4n-3n |
9 |
2•4n+4n-3n |
9 |
2•4n |
3 |
2 |
解答:(Ⅰ)解:当n≥2时2an=(3Sn-4)+(2-
Sn-1),
∴
=
(n≥1).
∴数列{an}是首项是2,公比是
的等比数列,
∴an=2×(
)n-1=
.…(4分)
(Ⅱ)解:由(Ⅰ),知an=
.
则Tn=b1+b2+…bn=2×
+3×
+4×
+…+(n+1)
…①
∴
Tn=2×
+3×
+4×
+…+(n+1).
…②…(5分)
①-②,得
Tn=2×
+(
+
+…+
)-(n+1)
=4+
-(n+1)
=4+2-2×(
)n-1-(n+1)
=6-
.
∴Tn=12-
.…(8分)
(Ⅲ)证明:∵cn=
=
=
=
<
…(12分)
∴Pn=c1+c2+…+cn<
(
+
+
+…+
)
=
•
=
(1-
)<
.…(14分)
5 |
2 |
|
|
∴
an+1 |
an |
1 |
2 |
∴数列{an}是首项是2,公比是
1 |
2 |
∴an=2×(
1 |
2 |
1 |
2n-2 |
(Ⅱ)解:由(Ⅰ),知an=
1 |
2n-2 |
则Tn=b1+b2+…bn=2×
1 |
2-1 |
1 |
20 |
1 |
21 |
1 |
2n-2 |
∴
1 |
2 |
1 |
2 0 |
1 |
21 |
1 |
22 |
1 |
2n-1 |
①-②,得
1 |
2 |
1 |
2-1 |
1 |
20 |
1 |
21 |
1 |
2n-2 |
1 |
2n-1 |
=4+
1-(
| ||
1-
|
1 |
2n-1 |
1 |
2 |
1 |
2n-1 |
=6-
n+3 |
2n-1 |
∴Tn=12-
n+3 |
2n-2 |
(Ⅲ)证明:∵cn=
3an |
4•2n-3n-1•an |
3 |
4n-3n-1 |
=
9 |
3•4n-3n |
9 |
2•4n+4n-3n |
9 |
2•4n |
∴Pn=c1+c2+…+cn<
9 |
2 |
1 |
4 |
1 |
42 |
1 |
43 |
1 |
4n |
=
9 |
2 |
| ||||
1-
|
3 |
2 |
1 |
4n |
3 |
2 |
点评:本题考查数列通项公式的求法,考查数列的前n项和的求法,考查不等式的证明.解题时要认真审题,熟练掌握等差数列和等比数列的通项公式和前n项和公式的应用,注意错位相减法的合理运用.
练习册系列答案
相关题目