题目内容
已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系的x轴的正半轴重合.设点O为坐标原点,直线(参数t∈R)与曲线C的极坐标方程为 ρcos2θ=2sinθ
(Ⅰ)求直线l与曲线C的普通方程;
(Ⅱ)设直线l与曲线C相交于A,B两点,证明:=0.
解:(Ⅰ)由直线l的参数方程消去t得普通方程为 y=2x+2.
由曲线C的极坐标方程两边同乘ρ得曲线C的普通方程为 x2=2y.
(Ⅱ)设A(x1,y1),B(x2,y2),由 消去y得 x2-4x-4=0,
∴x1+x2=4,x1•x2=-4,∴y1y2=,∴=x1x2+y1y2=0.
分析:(Ⅰ)由直线l的参数方程用代入法消去t得普通方程,曲线C的极坐标方程两边同乘ρ得曲线C的普通方程.
(Ⅱ)设A(x1,y1),B(x2,y2),由 消去y得 x2-4x-4=0,求出x1•x2和y1y2的值,代入 =x1x2+y1y2进行运算.
点评:本题考查把参数方程化为普通方程的方法,把极坐标方程化为直角坐标方程的方法,两个向量的数量积公式,一元二次方程根与系数的关系,求得x1•x2 和y1y2 的值,是解题的难点.
由曲线C的极坐标方程两边同乘ρ得曲线C的普通方程为 x2=2y.
(Ⅱ)设A(x1,y1),B(x2,y2),由 消去y得 x2-4x-4=0,
∴x1+x2=4,x1•x2=-4,∴y1y2=,∴=x1x2+y1y2=0.
分析:(Ⅰ)由直线l的参数方程用代入法消去t得普通方程,曲线C的极坐标方程两边同乘ρ得曲线C的普通方程.
(Ⅱ)设A(x1,y1),B(x2,y2),由 消去y得 x2-4x-4=0,求出x1•x2和y1y2的值,代入 =x1x2+y1y2进行运算.
点评:本题考查把参数方程化为普通方程的方法,把极坐标方程化为直角坐标方程的方法,两个向量的数量积公式,一元二次方程根与系数的关系,求得x1•x2 和y1y2 的值,是解题的难点.
练习册系列答案
相关题目