题目内容

已知a1=3且an=Sn-1+2n,则an=
(n+2)×2n-1
(n+2)×2n-1
;Sn=
(n+1)×2n
(n+1)×2n
分析:由a1=3,an=Sn-1+2n,知an-an-1=(Sn-1+2n)-(Sn-2+2n-1)=an-1+2n-1,所以an=2an-1+2n-1,an+1=2(an+2n)=2(2an-1+2n-1)+2n=22an-1+2×2n=22(2an-2+2n-2)+2×2n=23an-2+3×2n=…=2n•a1+n×2n=(n+3)×2n,由此能求出an和Sn
解答:解:∵a1=3,an=Sn-1+2n
∴an-an-1=(Sn-1+2n)-(Sn-2+2n-1
=an-1+2n-1
即an=2an-1+2n-1
an+1=2(an+2n)=2(2an-1+2n-1)+2n
=22an-1+2×2n
=22(2an-2+2n-2)+2×2n
=23an-2+3×2n
=…
=2n•a1+n×2n
=(n+3)×2n
∴an=(n+2)×2n-1
∵an=Sn-1+2n
∴Sn=an+1-2n+1
=(n+3)×2n-2n+1
=(n+1)×2n
故答案为:(n+2)×2n-1,(n+1)×2n
点评:本题考查数列的综合应用,解题时要认真审题,仔细解答,注意递推公式的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网