题目内容
(湖北卷理19)如图,在以点为圆心,为直径的半圆中,,是半圆弧上一点,
,曲线是满足为定值的动点的轨迹,且曲线过点.
(Ⅰ)建立适当的平面直角坐标系,求曲线的方程;
(Ⅱ)设过点的直线l与曲线相交于不同的两点、.
若△的面积不小于,求直线斜率的取值范围.
解:本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、不等式的解法以及综合解题能力.(满分13分)
(Ⅰ)解法1:以O为原点,AB、OD所在直线分别为x轴、y轴,建立平面直角坐标系,则A(-2,0),B(2,0),D(0,2),P(),依题意得
|MA|-|MB|=|PA|-|PB|=<|AB|=4.
∴曲线C是以原点为中心,A、B为焦点的双曲线.
设实平轴长为a,虚半轴长为b,半焦距为c,则c=2,2a=2,∴a2=2,b2=c2-a2=2.
∴曲线C的方程为.
解法2:同解法1建立平面直角坐标系,则依题意可得|MA|-|MB|=|PA|-|PB|<
|AB|=4.∴曲线C是以原点为中心,A、B为焦点的双曲线.
设双曲线的方程为>0,b>0).
则由 解得a2=b2=2,
∴曲线C的方程为
(Ⅱ)解法1:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理得(1-k2)x2-4kx-6=0.
∵直线l与双曲线C相交于不同的两点E、F,
②
设E(x,y),F(x2,y2),则由①式得x1+x2=,于是
|EF|=
=
而原点O到直线l的距离d=,
∴S△DEF=
若△OEF面积不小于2,即S△OEF,则有
③
综合②、③知,直线l的斜率的取值范围为
解法2:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理,
得(1-k2)x2-4kx-6=0.
∵直线l与双曲线C相交于不同的两点E、F,
∴.. ②
设E(x1,y1),F(x2,y2),则由①式得
|x1-x2|= ③
当E、F在同一去上时(如图1所示),
S△OEF=
当E、F在不同支上时(如图2所示).
S△ODE=
综上得S△OEF=于是
由|OD|=2及③式,得S△OEF=
若△OEF面积不小于2
④
综合②、④知,直线l的斜率的取值范围为