题目内容
5.如图,P为⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B、C,且PC=2PA,D为线段PC的中点,AD的延长线交⊙O于点E.若PB=$\frac{3}{4}$,则PA=$\frac{3}{2}$;AD•DE=$\frac{9}{8}$.分析 利用切割线定理,可得PA,利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2,即可得出结论.
解答 解:∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,
∴PA2=PB•PC,
∵PC=2PA,PB=$\frac{3}{4}$,
∴PA2=$\frac{3}{4}$•2PA,
∴PA=$\frac{3}{2}$;
∵PA2=PB•PC,PC=2PA,
∴PA=2PB,
∴PD=2PB,
∴PB=BD,
∴BD•DC=PB•2PB,
∵AD•DE=BD•DC,
∴AD•DE=2PB2=$\frac{9}{8}$.
故答案为:$\frac{3}{2}$,$\frac{9}{8}$.
点评 本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
13.已知甲、乙二人决定各购置一辆纯电动汽车,甲从A、B、C三类车型中挑选,乙只从B、C两类车型中挑选,甲、乙二人选择各类车型的概率如下表:
若甲、乙两人都选C类车型的概率为$\frac{1}{3}$.
(1)求p1、p2的值;
(2)该市对购买纯电动汽车进行补贴,补贴标准如下表:
记甲、乙两人购买所获得的财政补贴(单位:万元)的和为X,求X的数学期望E(X).
车型 概率 人 | AA | BB | CC |
甲 | $\frac{1}{6}$ | p1 | p2 |
乙 | / | $\frac{1}{3}$ | $\frac{2}{3}$ |
(1)求p1、p2的值;
(2)该市对购买纯电动汽车进行补贴,补贴标准如下表:
车型 | A | B | C |
补贴金额(万元) | 1 | 2 | 3 |
20.执行如图所示的程序框图,若输入的n∈{1,2,3},则输出的s属于( )
A. | {1?2}? | B. | {1?3}? | C. | {2?3}? | D. | {1?3?9}? |