题目内容

已知二项式∈x2+
1
2
x
n(n∈N°)
展开式中,前三项的二项式系数和是56,则展开式中的常数项为(  )
A.
45
256
B.
47
256
C.
49
256
D.
51
256
C0n
+
C1n
+
C2n
=56,
∴1+n+
n(n-1)
2
=56,
∴n2+n-110=0,
∴n=10或n=-11(舍去).
x2+
1
2
x
10
的展开式的通项为Tr+1
则Tr+1=
Cr10
•x2(10-r)(
1
2
)
r
(x-
1
2
)
r
=(
1
2
)
r
Cr10
x20-
5
2
r

令20-
5
2
r=0得:r=8.
∴展开式中的常数项为:T9=(
1
2
)
8
C810
=
45
256

故选A.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网