题目内容
设f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N+).
(1)请写出fn(x)的表达式(不需证明);
(2)求fn(x)的极小值;
(3)设gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值为a,fn(x)的最小值为b,求a-b的最小值.
(1)请写出fn(x)的表达式(不需证明);
(2)求fn(x)的极小值;
(3)设gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值为a,fn(x)的最小值为b,求a-b的最小值.
分析:(1)根据题意依次写出f1(x),f2(x),f3(x),…,根据体现的规律性,猜想出fn(x)的表达式;
(2)求出当函数f′n(x)=(x+n+1)•ex,令导函数等于0,取出x的值,判断x左右的单调性,即可求得fn(x)的极小值;
(3)根据二次函数求出gn(x)的最大值为a,根据(2)可知fn(x)的最小值为b,则a-b=(n-3)2+e-(n+1),利用数列的单调性,确定出a-b的最小值.
(2)求出当函数f′n(x)=(x+n+1)•ex,令导函数等于0,取出x的值,判断x左右的单调性,即可求得fn(x)的极小值;
(3)根据二次函数求出gn(x)的最大值为a,根据(2)可知fn(x)的最小值为b,则a-b=(n-3)2+e-(n+1),利用数列的单调性,确定出a-b的最小值.
解答:解:(1)由题意可得,f1(x)=(x+1)•ex,f2(x)=(x+2)•ex,f3(x)=(x+3)•ex,…,
猜测出fn(x)的表达式fn(x)=(x+n)•ex (n∈N*).
(2)由(1)可知,fn(x)=(x+n)•ex (n∈N*),
∴f′n(x)=(x+n+1)•ex,
令f′n(x)=0,解得x=-(n+1),
∵当x>-(n+1)时,f'n(x)>0,当x<-(n+1)时,f'n(x)<0,
∴当x=-(n+1)时,fn(x)取得极小值fn(-(n+1))=-e-(n+1),
即fn(x)的极小值为yn=-e-(n+1) (n∈N*).
(3)∵gn(x)=-x2-2(n+1)x-8n+8,
∴当x=-(n+1)时,gn(x)取最大值,即a=gn(-(n+1))=(n-3)2,
又∵b=fn(-(n+1))=-e-(n+1),
∴a-b=(n-3)2+e-(n+1),
问题转化为求cn=(n-3)2+e-(n+1)的最小值.
解法1(构造函数):
令h(x)=(x-3)2+e-(x+1)(x≥0),
则h'(x)=2(x-3)-e-(x+1),又h(x)在区间[0,+∞)上单调递增,
∴h'(x)≥h'(0)=-6-e-1,
又∵h'(3)=-e-4<0,h'(4)=2-e-5>0,
∴存在x0∈(3,4)使得h'(x0)=0,
又h'(x)在区间[0,+∞)上单调递增,
∴0≤x<x0时,h'(x0)<0,当x>x0时,h'(x0)>0,
即h(x)在区间[x0,+∞)上单调递增,在区间[0,x0)上单调递减,
∴(h(x))min=h(x0).
又∵h(3)=e-4,h(4)=1+e-5,则h(4)>h(3),
∴当n=3时,a-b取得最小值e-4′.
解法2(利用数列的单调性):
∵cn+1-cn=2n-5+
-
,
∴当n≥3时,2n-5≥1,
>0,
<1,
∴2n-5+
-
>0,
∴cn+1>cn.
∵c1=4+
,c2=1+
,c3=
,c1>c2>c3,
∴当n=3时,a-b取得最小值e-4.
猜测出fn(x)的表达式fn(x)=(x+n)•ex (n∈N*).
(2)由(1)可知,fn(x)=(x+n)•ex (n∈N*),
∴f′n(x)=(x+n+1)•ex,
令f′n(x)=0,解得x=-(n+1),
∵当x>-(n+1)时,f'n(x)>0,当x<-(n+1)时,f'n(x)<0,
∴当x=-(n+1)时,fn(x)取得极小值fn(-(n+1))=-e-(n+1),
即fn(x)的极小值为yn=-e-(n+1) (n∈N*).
(3)∵gn(x)=-x2-2(n+1)x-8n+8,
∴当x=-(n+1)时,gn(x)取最大值,即a=gn(-(n+1))=(n-3)2,
又∵b=fn(-(n+1))=-e-(n+1),
∴a-b=(n-3)2+e-(n+1),
问题转化为求cn=(n-3)2+e-(n+1)的最小值.
解法1(构造函数):
令h(x)=(x-3)2+e-(x+1)(x≥0),
则h'(x)=2(x-3)-e-(x+1),又h(x)在区间[0,+∞)上单调递增,
∴h'(x)≥h'(0)=-6-e-1,
又∵h'(3)=-e-4<0,h'(4)=2-e-5>0,
∴存在x0∈(3,4)使得h'(x0)=0,
又h'(x)在区间[0,+∞)上单调递增,
∴0≤x<x0时,h'(x0)<0,当x>x0时,h'(x0)>0,
即h(x)在区间[x0,+∞)上单调递增,在区间[0,x0)上单调递减,
∴(h(x))min=h(x0).
又∵h(3)=e-4,h(4)=1+e-5,则h(4)>h(3),
∴当n=3时,a-b取得最小值e-4′.
解法2(利用数列的单调性):
∵cn+1-cn=2n-5+
1 |
en+2 |
1 |
en+1 |
∴当n≥3时,2n-5≥1,
1 |
en+2 |
1 |
en+1 |
∴2n-5+
1 |
en+2 |
1 |
en+1 |
∴cn+1>cn.
∵c1=4+
1 |
e2 |
1 |
e3 |
1 |
e4 |
∴当n=3时,a-b取得最小值e-4.
点评:本题考察了导数与数列的综合应用,涉及了求函数的极小值和最小值.同时考查了二次函数的求最值问题,二次函数的最值问题要考虑抛物线的开口方向和对称轴的位置关系.对于数列问题的最值,一般应用数列的单调性进行研究.属于中档题.
练习册系列答案
相关题目