题目内容
若tan
•tan
+tan
•tan
+tan
•tan
=1,则cos(A+B+C)=______.
A |
2 |
B |
2 |
B |
2 |
C |
2 |
A |
2 |
C |
2 |
∵tan
•tan
+tan
•tan
+tan
•tan
=1,
而tan
•tan
+tan
•tan
=
,
1-tan
•tan
=
=
,
∴sin
sin
=cos
cos
,即cos
cos
-sin
sin
=0,
∴cos(
+
+
)=0,
∴cos(A+B+C)=2cos2(
+
+
)-1=-1.
故答案为:-1.
A |
2 |
B |
2 |
B |
2 |
C |
2 |
A |
2 |
C |
2 |
而tan
A |
2 |
B |
2 |
B |
2 |
C |
2 |
sin
| ||||||
cos
|
1-tan
A |
2 |
C |
2 |
cos
| ||||||||
cos
|
cos
| ||||||
cos
|
∴sin
B |
2 |
A+C |
2 |
B |
2 |
A+C |
2 |
B |
2 |
A+C |
2 |
B |
2 |
A+C |
2 |
∴cos(
A |
2 |
B |
2 |
C |
2 |
∴cos(A+B+C)=2cos2(
A |
2 |
B |
2 |
C |
2 |
故答案为:-1.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目