题目内容

若tan
A
2
•tan 
B
2
+tan
B
2
•tan 
C
2
+tan 
A
2
•tan 
C
2
=1
,则cos(A+B+C)=______.
∵tan
A
2
•tan 
B
2
+tan
B
2
•tan
C
2
+tan
A
2
•tan
C
2
=1,
而tan
A
2
•tan 
B
2
+tan
B
2
•tan
C
2
=
sin
B
2
sin
A+C
2
cos
A
2
cos
B
2
cos
C
2

1-tan
A
2
•tan
C
2
=
cos
A
2
cos
C
2
-sin
A
2
sin
C
2
cos
A
2
cos
C
2
=
cos
B
2
cos
A+C
2
cos
A
2
cos
B
2
cos
C
2


∴sin
B
2
sin
A+C
2
=cos
B
2
cos
A+C
2
,即cos
B
2
cos
A+C
2
-sin
B
2
sin
A+C
2
=0,
∴cos(
A
2
+
B
2
+
C
2
)=0,
∴cos(A+B+C)=2cos2(
A
2
+
B
2
+
C
2
)
-1=-1.
故答案为:-1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网