题目内容
已知中心为坐标原点O,焦点在x轴上的椭圆的两个短轴端点和左右焦点所组成的四边形是面积为2的正方形,(1)求椭圆的标准方程;
(2)过点P(0,2)的直线l与椭圆交于点A,B,当△OAB面积最大时,求直线l的方程.
【答案】分析:(1)设椭圆方程为,由已知得出关于a,b的方程组,解之即得a,b的值,从而写出所求椭圆的标准方程即可;
(2)根据题意可知直线l的斜率存在,故设直线l的方程为y=kx+2,A(x1,y1),B(x2,y2),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得k值,从而解决问题.
解答:解:设椭圆方程为,
(1)由已知得
∴所求椭圆的标准方程为
(2)根据题意可知直线l的斜率存在,故设直线l的方程为y=kx+2,A(x1,y1),B(x2,y2)
由方程组消去y得关于x得:方程(1+2k2)x2+8kx+6=0,
由直线l与椭圆相交于A,B两点,
则有△>0⇒64k2-24(1+2k2)=16k2-24>0,解得或
由韦达定理得:
故
=
又因为原点O到直线l的距离,
故
令(m>0),则2k2=m2+3,所以S=
当且仅当m=2时,,此时,满足题意,
∴直线l的方程为,或.
点评:本题考查用待定系数法求椭圆的标准方程,当直线与圆锥曲线相交时 涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化 同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.
(2)根据题意可知直线l的斜率存在,故设直线l的方程为y=kx+2,A(x1,y1),B(x2,y2),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系利用弦长公式即可求得k值,从而解决问题.
解答:解:设椭圆方程为,
(1)由已知得
∴所求椭圆的标准方程为
(2)根据题意可知直线l的斜率存在,故设直线l的方程为y=kx+2,A(x1,y1),B(x2,y2)
由方程组消去y得关于x得:方程(1+2k2)x2+8kx+6=0,
由直线l与椭圆相交于A,B两点,
则有△>0⇒64k2-24(1+2k2)=16k2-24>0,解得或
由韦达定理得:
故
=
又因为原点O到直线l的距离,
故
令(m>0),则2k2=m2+3,所以S=
当且仅当m=2时,,此时,满足题意,
∴直线l的方程为,或.
点评:本题考查用待定系数法求椭圆的标准方程,当直线与圆锥曲线相交时 涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化 同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍.
练习册系列答案
相关题目