题目内容

10.已知$\frac{π}{6}$<α<$\frac{2π}{3}$,cos(α+$\frac{π}{3}$)=m(m≠0),则tan($\frac{2}{3}$π-α)-$\frac{\sqrt{{1-m}^{2}}}{m}$.

分析 由条件利用同角三角函数的基本关系求得tan(α+$\frac{π}{3}$)的值,再利用诱导公式求得tan($\frac{2π}{3}$-α)的值.

解答 解:由$\frac{π}{6}$<α<$\frac{2π}{3}$,可得α+$\frac{π}{3}$∈($\frac{π}{2}$,π),又cos(α+$\frac{π}{3}$)=m<0,
∴sin(α+$\frac{π}{3}$)=$\sqrt{{1-cos}^{2}(α+\frac{π}{3})}$=$\sqrt{{1-m}^{2}}$,∴tan(α+$\frac{π}{3}$)=$\frac{\sqrt{{1-m}^{2}}}{m}$,
∴tan($\frac{2π}{3}$-α)=tan[π-(α+$\frac{π}{3}$)]=-tan(α+$\frac{π}{3}$)=-$\frac{\sqrt{{1-m}^{2}}}{m}$,
故答案为:-$\frac{\sqrt{{1-m}^{2}}}{m}$.

点评 本题主要考查同角三角函数的基本关系,诱导公式的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网