题目内容
已知函数,其中
(1) 当满足什么条件时,取得极值?
(2) 已知,且在区间上单调递增,试用表示出的取值范围.
解析: (1)由已知得,令,得,
要取得极值,方程必须有解,
所以△,即, 此时方程的根为
,,
所以
当时,
x | (-∞,x1) | x 1 | (x1,x2) | x2 | (x2,+∞) |
f’(x) | + | 0 | - | 0 | + |
f (x) | 增函数 | 极大值 | 减函数 | 极小值 | 增函数 |
所以在x 1, x2处分别取得极大值和极小值.
当时,
x | (-∞,x2) | x 2 | (x2,x1) | x1 | (x1,+∞) |
f’(x) | - | 0 | + | 0 | - |
f (x) | 减函数 | 极小值 | 增函数 | 极大值 | 减函数 |
所以在x 1, x2处分别取得极大值和极小值.
综上,当满足时, 取得极值.
(2)要使在区间上单调递增,需使在上恒成立.
即恒成立, 所以
设,,
令得或(舍去),
当时,,当时,单调增函数;
当时,单调减函数,
所以当时,取得最大,最大值为.
所以
当时,,此时在区间恒成立,所以在区间上单调递增,当时最大,最大值为,所以
综上,当时, ; 当时,
【命题立意】:本题为三次函数,利用求导的方法研究函数的极值、单调性和函数的最值,函数在区间上为单调函数,则导函数在该区间上的符号确定,从而转为不等式恒成立,再转为函数研究最值.运用函数与方程的思想,化归思想和分类讨论的思想解答问题.
练习册系列答案
相关题目