题目内容
已知下列命题四个命题:
①若f(x)是定义在[-1,1]上的偶函数,且在[-1,0)上是增函数,θ∈(
,
),则f(sinθ)>f(cosθ);
②在△ABC中,A>B是cosA<cosB的充要条件;
③设函数f(x)=x2+2(-2≤x<0),其反函数为f-1(x),则f-1(3)=-1或1.
④在△ABC中,角A、B、C所对的边分别为a、b、c,已知b2+c2=a2+bc,则A=
.
其中真命题的个数有( )
①若f(x)是定义在[-1,1]上的偶函数,且在[-1,0)上是增函数,θ∈(
π |
4 |
π |
2 |
②在△ABC中,A>B是cosA<cosB的充要条件;
③设函数f(x)=x2+2(-2≤x<0),其反函数为f-1(x),则f-1(3)=-1或1.
④在△ABC中,角A、B、C所对的边分别为a、b、c,已知b2+c2=a2+bc,则A=
π |
3 |
其中真命题的个数有( )
分析:①联系偶函数和增函数得到函数在[0,1]上为减函数,从而可以判断;
②因为A、B是三角形的内角,所以A,B∈(0,π),在(0,π)上,y=cosx是减函数.由此知△ABC中,“A>B”?“cosA<cosB”,即可得答案;
③欲求f-1(3),根据原函数的反函数为f-1(x)知,只要求满足于f(x)=3的x的值即可;
④根据余弦定理表示出cosA,把已知得等式变形后代入即可求出cosA的值,由A的范围,利用特殊角的三角函数值即可求出A的度数.
②因为A、B是三角形的内角,所以A,B∈(0,π),在(0,π)上,y=cosx是减函数.由此知△ABC中,“A>B”?“cosA<cosB”,即可得答案;
③欲求f-1(3),根据原函数的反函数为f-1(x)知,只要求满足于f(x)=3的x的值即可;
④根据余弦定理表示出cosA,把已知得等式变形后代入即可求出cosA的值,由A的范围,利用特殊角的三角函数值即可求出A的度数.
解答:解:①由已知可得函数在[0,1]上为减函数,∵θ∈(
,
),∴1>sinθ>cosθ>0,∴f(sinθ)<f(cosθ),
故①错;
②∵A、B是三角形的内角,∴A∈(0,π),B∈(0,π),
∵在(0,π)上,y=cosx是减函数,∴△ABC中,“A>B”?“cosA<cosB”,故②正确;
③令f(t)=3,则t=f-1(3)(-2≤t<0),所以有t2+2=3,所以t=±1,因为-2≤t<0,所以t=-1,故③错误;
④∵b2+c2=a2+bc,∴a2=b2+c2-bc,
结合余弦定理知cosA=
=
=
,
又A∈(0,π),∴A=
,故④正确.
从而真命题有两个
故选B.
π |
4 |
π |
2 |
故①错;
②∵A、B是三角形的内角,∴A∈(0,π),B∈(0,π),
∵在(0,π)上,y=cosx是减函数,∴△ABC中,“A>B”?“cosA<cosB”,故②正确;
③令f(t)=3,则t=f-1(3)(-2≤t<0),所以有t2+2=3,所以t=±1,因为-2≤t<0,所以t=-1,故③错误;
④∵b2+c2=a2+bc,∴a2=b2+c2-bc,
结合余弦定理知cosA=
b2+c2-a2 |
2bc |
b2+c2-(b2+c2-bc) |
2bc |
1 |
2 |
又A∈(0,π),∴A=
π |
3 |
从而真命题有两个
故选B.
点评:本题的考点是命题的真假判断与应用,解题时需依据函数的性质,余弦定理一一判断,综合性强.
练习册系列答案
相关题目