ÌâÄ¿ÄÚÈÝ
ÒÑÖªÅ×ÎïÏߵĶ¥µãÔÚ×ø±êÔµãO£¬½¹µãFÔÚxÖáÕý°ëÖáÉÏ£¬Çãб½ÇΪÈñ½ÇµÄÖ±Ïßl¹ýFµã£¬ÉèÖ±ÏßlÓëÅ×ÎïÏß½»ÓÚA¡¢BÁ½µã£¬ÓëÅ×ÎïÏßµÄ×¼Ïß½»ÓÚMµã£¬=¦Ë£¨¦Ë£¾0£©£¨1£©Èô¦Ë=1£¬ÇóÖ±ÏßlбÂÊ
£¨2£©ÈôµãA¡¢BÔÚxÖáÉϵÄÉäÓ°·Ö±ðΪA1£¬B1ÇÒ||£¬||£¬2||³ÉµÈ²îÊýÁÐÇó¦ËµÄÖµ
£¨3£©ÉèÒÑÖªÅ×ÎïÏßΪC1£ºy2=x£¬½«ÆäÈƶ¥µã°´ÄæʱÕë·½ÏòÐýת90°±ä³ÉC1¡ä£®Ô²C2£ºx2+£¨y-4£©=1µÄÔ²ÐÄΪµãN£®ÒÑÖªµãPÊÇÅ×ÎïÏßC1¡äÉÏÒ»µã£¨ÒìÓÚԵ㣩£¬¹ýµãP×÷Ô²C2µÄÁ½ÌõÇÐÏߣ¬½»Å×ÎïÏßC¡ä1ÓÚT£¬S£¬Á½µã£¬Èô¹ýN£¬PÁ½µãµÄÖ±Ïßl´¹Ö±ÓÚTS£¬ÇóÖ±ÏßlµÄ·½³Ì£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÏÈÈ·¶¨p=¦Ë£¨x2-£©£¬½ø¶øÇó³öBµÄ×ø±ê£¬¼´¿ÉÇóÖ±ÏßlµÄбÂÊ£»
£¨2£©Ö±Ïß·½³Ì´úÈëÅ×ÎïÏß·½³Ì£¬ÇóµÃA1¡¢B1µÄºá×ø±ê£¬¸ù¾Ý||£¬||£¬2||³ÉµÈ²îÊýÁУ¬¿ÉµÃ2||=||+2||£¬´Ó¶ø¿ÉµÃx2-2x1=£¬ÓÉ´Ë¿ÉÇó¦ËµÄÖµ£»
£¨3£©Éè¹ýµãPµÄÔ²C2µÄÇÐÏß·½³Ì£¬¿ÉµÃPS£¬PTµÄбÂÊÊÇ·½³ÌµÄÁ½¸ù£¬ÀûÓÃΤ´ï¶¨Àí¼°ÏòÁ¿µÄÊýÁ¿»ý£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º½â£ºÒÀÌâÒâÉèÅ×ÎïÏß·½³ÌΪy2=2px£¨p£¾0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßlµÄбÂÊΪk£¬k£¾0£¬MµÄ×Ý×ø±êΪy£¬
ÔòF£¨£¬0£©×¼Ïß·½³ÌΪx=-
Ö±ÏßlµÄ·½³ÌΪy=k£¨x-£©£¬M£¨-£¬y£©£¬y2£¾0
¡ß=¦Ë£¬¡à£¨p£¬-y£©=¦Ë£¨x2-£¬y£©£¬¹Êp=¦Ë£¨x2-£©
£¨1£©Èô¦Ë=1£¬ÓÉp=¦Ë£¨x2-£©£¬y22=2px2£¬y2£¾0£¬µÃx2=£¬y2=p£¬
¡àB£¨£¬p£©
¡àÖ±ÏßlµÄбÂÊk==£»
£¨2£©Ö±ÏßlµÄ·½³Ì´úÈëy2=2px£¬ÏûÈ¥y£¬¿ÉµÃk2x2-£¨k2p+2p£©x+=0£¬Ôòx1x2=
¡ß£¬¡à=
¡ß||£¬||£¬2||³ÉµÈ²îÊýÁÐ
¡à2||=||+2||£¬
¡à
¡àx2-2x1=
½«ºÍ´úÈëÉÏʽµÃ£¬¡à¦Ë=2£»
£¨3£©ÉèP£¨x£¬x2£©£¬S£¨x1£¬x12£©£¬T£¨x2£¬x22£©£¬ÓÉÌâÒâµÃx¡Ù0£¬x¡Ù±1£¬x1¡Ùx2£®
Éè¹ýµãPµÄÔ²C2µÄÇÐÏß·½³ÌΪy-x2=k£¨x-x£©£¬¼´y=kx-kx+x2£®¢Ù
Ôò=1£¬
¼´£¨x2-1£©k2+2x£¨4-x2£©k+£¨x2-4£©2-1=0£®
ÉèPS£¬PTµÄбÂÊΪk1£¬k2£¨k1¡Ùk2£©£¬Ôòk1£¬k2ÊÇÉÏÊö·½³ÌµÄÁ½¸ù£¬ËùÒÔ
k1+k2=£¬k1k2=£®
½«¢Ù´úÈëy=x2£¬µÃx2-kx+kx-x2=0£¬
ÓÉÓÚxÊÇ´Ë·½³ÌµÄ¸ù£¬¹Êx1=k1-x£¬x2=k2-x£¬
ËùÒÔ=x1+x2=k1+k2-2x=-2x£¬kNP=£®
ÓÉMP¡ÍAB£¬µÃkNP•kST=[-2x]•=-1£¬½âµÃx2=£¬
¼´µãPµÄ×ø±êΪ£¨£¬£©£¬ËùÒÔÖ±ÏßlµÄ·½³ÌΪ£®
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëÅ×ÎïÏßµÄλÖùØϵ£¬¿¼²éµÈ²îÊýÁеÄÐÔÖÊ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
£¨2£©Ö±Ïß·½³Ì´úÈëÅ×ÎïÏß·½³Ì£¬ÇóµÃA1¡¢B1µÄºá×ø±ê£¬¸ù¾Ý||£¬||£¬2||³ÉµÈ²îÊýÁУ¬¿ÉµÃ2||=||+2||£¬´Ó¶ø¿ÉµÃx2-2x1=£¬ÓÉ´Ë¿ÉÇó¦ËµÄÖµ£»
£¨3£©Éè¹ýµãPµÄÔ²C2µÄÇÐÏß·½³Ì£¬¿ÉµÃPS£¬PTµÄбÂÊÊÇ·½³ÌµÄÁ½¸ù£¬ÀûÓÃΤ´ï¶¨Àí¼°ÏòÁ¿µÄÊýÁ¿»ý£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º½â£ºÒÀÌâÒâÉèÅ×ÎïÏß·½³ÌΪy2=2px£¨p£¾0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßlµÄбÂÊΪk£¬k£¾0£¬MµÄ×Ý×ø±êΪy£¬
ÔòF£¨£¬0£©×¼Ïß·½³ÌΪx=-
Ö±ÏßlµÄ·½³ÌΪy=k£¨x-£©£¬M£¨-£¬y£©£¬y2£¾0
¡ß=¦Ë£¬¡à£¨p£¬-y£©=¦Ë£¨x2-£¬y£©£¬¹Êp=¦Ë£¨x2-£©
£¨1£©Èô¦Ë=1£¬ÓÉp=¦Ë£¨x2-£©£¬y22=2px2£¬y2£¾0£¬µÃx2=£¬y2=p£¬
¡àB£¨£¬p£©
¡àÖ±ÏßlµÄбÂÊk==£»
£¨2£©Ö±ÏßlµÄ·½³Ì´úÈëy2=2px£¬ÏûÈ¥y£¬¿ÉµÃk2x2-£¨k2p+2p£©x+=0£¬Ôòx1x2=
¡ß£¬¡à=
¡ß||£¬||£¬2||³ÉµÈ²îÊýÁÐ
¡à2||=||+2||£¬
¡à
¡àx2-2x1=
½«ºÍ´úÈëÉÏʽµÃ£¬¡à¦Ë=2£»
£¨3£©ÉèP£¨x£¬x2£©£¬S£¨x1£¬x12£©£¬T£¨x2£¬x22£©£¬ÓÉÌâÒâµÃx¡Ù0£¬x¡Ù±1£¬x1¡Ùx2£®
Éè¹ýµãPµÄÔ²C2µÄÇÐÏß·½³ÌΪy-x2=k£¨x-x£©£¬¼´y=kx-kx+x2£®¢Ù
Ôò=1£¬
¼´£¨x2-1£©k2+2x£¨4-x2£©k+£¨x2-4£©2-1=0£®
ÉèPS£¬PTµÄбÂÊΪk1£¬k2£¨k1¡Ùk2£©£¬Ôòk1£¬k2ÊÇÉÏÊö·½³ÌµÄÁ½¸ù£¬ËùÒÔ
k1+k2=£¬k1k2=£®
½«¢Ù´úÈëy=x2£¬µÃx2-kx+kx-x2=0£¬
ÓÉÓÚxÊÇ´Ë·½³ÌµÄ¸ù£¬¹Êx1=k1-x£¬x2=k2-x£¬
ËùÒÔ=x1+x2=k1+k2-2x=-2x£¬kNP=£®
ÓÉMP¡ÍAB£¬µÃkNP•kST=[-2x]•=-1£¬½âµÃx2=£¬
¼´µãPµÄ×ø±êΪ£¨£¬£©£¬ËùÒÔÖ±ÏßlµÄ·½³ÌΪ£®
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëÅ×ÎïÏßµÄλÖùØϵ£¬¿¼²éµÈ²îÊýÁеÄÐÔÖÊ£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿