题目内容
(文科)已知数列{an}的各项均为正数,其前项和为,且对于任意的,都有点(an,Sn)在直线y=2x-2上
(1)求数列{an}的通项公式;
(2)若bn=2log2an-1,求数列{
}的前n项和Tn.
(1)求数列{an}的通项公式;
(2)若bn=2log2an-1,求数列{
bn | an |
分析:(1)由题意点(an,Sn)在直线y=2x-2上,可得Sn=2an-2,利用递推公式 an=
可求an;
(2)由(1)可求bn=2n-1,则数列bn为等差数列,而数列an为等比数列,
=
=(2n-1)(
)n适合用错位相减求和.
|
(2)由(1)可求bn=2n-1,则数列bn为等差数列,而数列an为等比数列,
bn |
an |
2n-1 |
2n |
1 |
2 |
解答:解:(1)由已知Sn=2an-2 ①,当n≥2时,Sn-1=2an-1-2 ②
①-②得Sn-Sn-1=2an-2an-1,即an=2an-2an-1,
=2
又n=1时有S1=2a1-2,得a1=2
∴{an}是首项a1=2,公比q=2的等比数列,
故数列{an}的通项公式为:an=2n
(2)由(1)知bn=2log2an-1=2log22n-1=2n-1,所以
=
=(2n-1)(
)n
数列{
}的前n项和Tn=1×(
)1+3×(
)2+…+(2n-1)(
)n ③
③式两边同乘以
得,
Tn=1×(
)2+3×(
)3+…+(2n-1)(
)n+1 ④
③-④得
Tn=
+2[(
)2+(
)3+…+(
)n]-(2n-1)(
)n+1
=
+
-(2n-1)(
)n+1=
-(
)n-1-(2n-1)(
)n+1
=
-(
)n+1(4+2n-1)=
-(
)n+1(2n+3)
故Tn=3-(2n+3)(
)n
①-②得Sn-Sn-1=2an-2an-1,即an=2an-2an-1,
an |
an-1 |
又n=1时有S1=2a1-2,得a1=2
∴{an}是首项a1=2,公比q=2的等比数列,
故数列{an}的通项公式为:an=2n
(2)由(1)知bn=2log2an-1=2log22n-1=2n-1,所以
bn |
an |
2n-1 |
2n |
1 |
2 |
数列{
bn |
an |
1 |
2 |
1 |
2 |
1 |
2 |
③式两边同乘以
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
③-④得
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
=
1 |
2 |
2×
| ||||
1-
|
1 |
2 |
3 |
2 |
1 |
2 |
1 |
2 |
=
3 |
2 |
1 |
2 |
3 |
2 |
1 |
2 |
故Tn=3-(2n+3)(
1 |
2 |
点评:本题考查数列的递推公式的运用、错位相减求和的运用,该求和方法已知求和的热点、难点,运用的关键是理解该方法的实质,掌握该求和的基本步骤.
练习册系列答案
相关题目