题目内容

设函数若关于x的方程f2(x)=af(x)恰有四个不同的实数解,则实数a的取值范围为( )
A.(-∞,0)
B.(0,1)
C.[0,1]
D.(1,+∞)
【答案】分析:由已知中函数若关于x的方程f2(x)=af(x)恰有四个不同的实数解,我们可以根据函数f(x)的图象得到f(x)=a恰有三个不同的实数解,进而得到实数a的取值范围.
解答:解:函数的图象如下图所示:

关于x的方程f2(x)=af(x)可转化为:
f(x)=0,或f(x)=a,
若关于x的方程f2(x)=af(x)恰有四个不同的实数解,
则f(x)=a恰有三个不同的实数解,
由图可知:0<a<1
故选B
点评:本题考查的知识点是根的存在性及根的个数判断,其中根据已知中函数的解析式,画出函数的图象,再利用数形结合是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网