题目内容

已知曲线y=
1
3
x3+
4
3
,则曲线在点P(2,4)处的切线方程为(  )
A、4x+y-12=0
B、4x-y-4=0
C、2x+y-8=0
D、2x-y=0
分析:求出曲线方程的导函数,把P点的横坐标代入导函数中求出的导函数值即为所求切线的斜率,由求出的斜率和切点P的坐标写出切线方程即可.
解答:解:求导得:y′=x2,由切点P(2,4),
所以所求切线的斜率k=y′|x=2=4,
则曲线在点P(2,4)处的切线方程为:y-4=4(x-2),即4x-y-4=0.
故选B
点评:解本题的思路是求出曲线解析式的导函数,把切点的横坐标代入求出切线的斜率,进而写出切线方程.要求学生掌握求导法则以及会根据一点坐标和斜率写出直线的方程.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网