题目内容

已知函数
(1)求的值;
(2)求使 成立的x的取值集合.
【答案】分析:(1)将x=代入f(x)解析式,利用两角和与差的余弦函数公式及特殊角的三角函数值化简即可得到结果;
(2)f(x)解析式利用两角和与差的余弦函数公式及特殊角的三角函数值化为一个角的余弦函数,变形后,利用余弦函数的图象与性质即可得到满足题意x的集合.
解答:解:(1)f()=coscos(-)=coscos=-cos2=-
(2)f(x)=cosxcos(x-)=cosx(cosx+sinx)
=cos2x+sinxcosx=(1+cos2x)+sin2x=cos(2x-)+
∴f(x)<,化为cos(2x-)+,即cos(2x-)<0,
∴2kπ+<2x-<2kπ+(k∈Z),
解得:kπ+<x<kπ+(k∈Z),
则使f(x)<成立的x取值集合为{x|kπ+,kπ+(k∈Z)}.
点评:此题考查了两角和与差的余弦函数公式,以及余弦函数的单调性,熟练掌握公式是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网