题目内容
(06年浙江卷理)(14分)
如图,椭圆=1(a>b>0)与过点A(2,0)B(0,1)的直线有且只有一个公共点T,且椭圆的离心率e=.
(Ⅰ)求椭圆方程;
(Ⅱ)设F、F分别为椭圆的左、右焦点,M为线段AF的中点,求证:∠ATM=∠AFT.
本题主要考查直线与椭圆的位置关系、椭圆的几何性质,同时考察解析几何的基本思想方法和综合解题能力。
解析:(I)过点、的直线方程为
因为由题意得有惟一解,
即有惟一解,
所以
(),
故
又因为 即
所以
从而得
故所求的椭圆方程为
(II)由(I)得
故
从而
由
解得
所以
因为
又得
因此
练习册系列答案
相关题目