题目内容
lim |
n→∞ |
n2+an |
分析:通过分子有理化,然后分子与分母同除n,利用数列极限的运算法则,推出关系式,求出b,a的值即可.
解答:解:
[
-(bn+1)]
=
=
=
=
=
=b
∴1-b2=0,解得b=1或b=-1(舍去),且
=b,
∴a=4.
故选:A.
lim |
n→∞ |
n2+an |
=
lim |
n→∞ |
[
| ||||
|
=
lim |
n→∞ |
n2+an-(bn+1)2 | ||
|
=
lim |
n→∞ |
n2+an-b2n2-2bn-1 | ||
|
=
lim |
n→∞ |
n2(1-b2)+an-2bn-1 | ||
|
=
lim |
n→∞ |
n(1-b2)+a-2b-
| ||||||
|
=b
∴1-b2=0,解得b=1或b=-1(舍去),且
a-2b |
1+b |
∴a=4.
故选:A.
点评:本题考查数列的极限的运算法则,分子有理化的运算,考查计算能力.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目