题目内容

已知椭圆 的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点.
(1)当直线AM的斜率为1时,求点M的坐标;
(2)当直线AM的斜率变化时,直线MN是否过x轴上的一定点,若过定点,请给出证明,并求出该定点,若不过定点,请说明理由.
【答案】分析:(1)根据直线AM的斜率为1时,得出直线AM:y=x+2,代入椭圆方程并化简得:5x2+16x+12=0,解得点M的坐标即可;(2)对于是否过x轴上的一定点问题,可先假设存在,设直线AM的斜率为k,则AM:y=k(x+2),将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根系数的关系即可求得P点的坐标,从而解决问题.
解答:解:(1)直线AM的斜率为1时,直线AM:y=x+2,(1分)
代入椭圆方程并化简得:5x2+16x+12=0,(2分)
解之得,∴.(4分)
(2)设直线AM的斜率为k,则AM:y=k(x+2),
化简得:(1+4k2)x2+16k2x+16k2-4=0.(6分)
∵此方程有一根为-2,∴,(7分)
同理可得.(8分)
由(1)知若存在定点,则此点必为.(9分)
,(11分)
同理可计算得.(13分)
∴直线MN过x轴上的一定点.(16分)
点评:本题考查直接法求轨迹方程、直线与抛物线的位置关系、直线过定点问题.考查推理能力和运算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网