题目内容
(本小题满分14分)
已知函数
在
上有定义,对任意实数
和任意实数
,都有
.
(Ⅰ)证明
;
(Ⅱ)证明
(其中k和h均为常数);
(Ⅲ)当(Ⅱ)中
的时,设
,讨论
在
内的单调性.
已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449281409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449312317.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449327368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449359249.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449374579.png)
(Ⅰ)证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449483460.png)
(Ⅱ)证明
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449499937.png)
(Ⅲ)当(Ⅱ)中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449561395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449593863.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449671418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449702403.png)
(Ⅰ)证明:见解析;(Ⅱ)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344497331066.png)
(Ⅲ)
在区间
内单调递减, 在区间(
)内单调递增.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344497331066.png)
(Ⅲ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449749442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449780507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449811474.png)
本小题主要考查函数的概念、导数应用、函数的单调区间和极值等知识,考查运用数学知识解决问题及推理的能力。
(1)对于任意的a>0,
,均有
①在①中取![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449889933.png)
(2) 令
时,∵
,∴
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450185656.png)
而
时,
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450263625.png)
而
, ∴
,即
成立
赋值法得到结论。
(3)由(Ⅱ)中的③知,当
时,
,
分析导数得到单调区间。
(Ⅰ)证明:对于任意的a>0,
,均有
①
在①中取![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449889933.png)
∴
②
(Ⅱ)证法一:当
时,由①得
取
,则有
③
当
时,由①得 ![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450856991.png)
取
,则有
④
综合②、③、④得
;
证法二:
令
时,∵
,∴
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450185656.png)
而
时,
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450263625.png)
而
, ∴
,即
成立
令
,∵
,∴
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234451964681.png)
而
时,
,则![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234452011821.png)
即
成立。综上知![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344497331066.png)
(Ⅲ)解法1:由(Ⅱ)中的③知,当
时,
,
从而![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344521351186.png)
又因为k>0,由此可得
所以
在区间
内单调递减,在区间(
)内单调递增。
解法2:由(Ⅱ)中的③知,当
时,
,
设
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344525102972.png)
又因为k>0,所以
(i)当
;
(ii)当![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344525721197.png)
所以
在区间
内单调递减, 在区间(
)内单调递增.
(1)对于任意的a>0,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449842433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449873640.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449889933.png)
(2) 令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450092368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450107398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450154393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450185656.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450201393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450232767.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450263625.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450357696.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450185656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450419553.png)
赋值法得到结论。
(3)由(Ⅱ)中的③知,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450154393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450451702.png)
分析导数得到单调区间。
(Ⅰ)证明:对于任意的a>0,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449842433.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449873640.png)
在①中取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449889933.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450731537.png)
(Ⅱ)证法一:当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450747391.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450763740.png)
取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450794503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450809552.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450825383.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450856991.png)
取
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450872553.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450887586.png)
综合②、③、④得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344509191112.png)
证法二:
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450092368.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450107398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450154393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450185656.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450201393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450232767.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450263625.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450357696.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450185656.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450419553.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234451886378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450107398.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234451933386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234451964681.png)
而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234451933386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234451995797.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234452011821.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234452057631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344497331066.png)
(Ⅲ)解法1:由(Ⅱ)中的③知,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450154393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450451702.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344521351186.png)
又因为k>0,由此可得
![]() | ![]() | ![]() | ![]() |
![]() | - | 0 | + |
![]() | ↘ | 极小值2 | ↗ |
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449749442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234452182541.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234452432525.png)
解法2:由(Ⅱ)中的③知,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450154393.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234450451702.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234452494916.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344525102972.png)
又因为k>0,所以
(i)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234452525774.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234452557658.png)
(ii)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232344525721197.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449749442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449780507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823234449811474.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目