题目内容
已知点P为圆x2+y2=4上的动点,且P不在x轴上,PD⊥x轴,垂足为D,线段PD中点Q的轨迹为曲线C,过定点M(t,0)(0<t<2)任作一条与y轴不垂直的直线l,它与曲线C交于A、B两点.(1)求曲线C的方程;
(2)试证明:在x轴上存在定点N,使得∠ANB总能被x轴平分.
分析:(1)设Q(x,y)为曲线C上的任意一点,根据点P(x,2y)在圆x2+y2=4上,得出x,y之间的关系即为曲线C的方程;
(2)设点N的坐标为(n,0),直线l的方程为x=sy+t,将直线l的方程代入曲线C的方程消去x得到关于y的一元二次方程,再结合根系数的关系利用“要使∠ANB被x轴平分,只要kAN+kBN=0”即可证得在x轴上存在定点N,使得∠ANB总能被x轴平分,从而解决问题.
(2)设点N的坐标为(n,0),直线l的方程为x=sy+t,将直线l的方程代入曲线C的方程消去x得到关于y的一元二次方程,再结合根系数的关系利用“要使∠ANB被x轴平分,只要kAN+kBN=0”即可证得在x轴上存在定点N,使得∠ANB总能被x轴平分,从而解决问题.
解答:解:(1)设Q(x,y)为曲线C上的任意一点,则点P(x,2y)在圆x2+y2=4上,
∴x2+4y2=4,曲线C的方程为
+y2=1(y≠0).(2分)
(2)设点N的坐标为(n,0),直线l的方程为x=sy+t,(3分)
代入曲线C的方程
+y2=1,可得(s2+4)y2+2tsy+t2-4=0,(5分)
∵0<t<2,∴△=(2ts)2-4(s2+4)(t2-4)=16(s2+4-t2)>0,
∴直线l与曲线C总有两个公共点.(也可根据点M在椭圆C的内部得到此结论)(6分)
设点A,B的坐标分别(x1,y1),(x2,y2),
则y1+y2=
,y1y2=
,
要使∠ANB被x轴平分,只要kAN+kBN=0,(9分)
即
+
=0,y1(x2-n)+y2(x1-n)=0,(10分)
也就是y1(sy2+t-n)+y2(sy1+t-n)=0,2sy1y2+(t-n)(y1+y2)=0,
即2s•
+(t-n)•
=0,即只要(nt-4)s=0(12分)
当n=
时,(*)对任意的s都成立,从而∠ANB总能被x轴平分.(13分)
所以在x轴上存在定点N(
,0),使得∠ANB总能被x轴平分.(14分)
∴x2+4y2=4,曲线C的方程为
x2 |
4 |
(2)设点N的坐标为(n,0),直线l的方程为x=sy+t,(3分)
代入曲线C的方程
x2 |
4 |
∵0<t<2,∴△=(2ts)2-4(s2+4)(t2-4)=16(s2+4-t2)>0,
∴直线l与曲线C总有两个公共点.(也可根据点M在椭圆C的内部得到此结论)(6分)
设点A,B的坐标分别(x1,y1),(x2,y2),
则y1+y2=
-2ts |
s2+4 |
t2-4 |
s2+4 |
要使∠ANB被x轴平分,只要kAN+kBN=0,(9分)
即
y1 |
x1-n |
y2 |
x2-n |
也就是y1(sy2+t-n)+y2(sy1+t-n)=0,2sy1y2+(t-n)(y1+y2)=0,
即2s•
t2-4 |
s2+4 |
(-2ts) |
s2+4 |
当n=
4 |
t |
所以在x轴上存在定点N(
4 |
t |
点评:本小题主要考查椭圆的应用、轨迹方程等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.对于存在性问题,可先假设存在,求出满足题意的值,若出现矛盾,则说明假设不成立,即不存在;否则存在.
练习册系列答案
相关题目