题目内容
在公差不为0的等差数列{an}中,a1,a4,a8成等比数列.
(1)已知数列{an}的前10项和为45,求数列{an}的通项公式;
(2)若bn=
,且数列{bn}的前n项和为Tn,若Tn=
-
,求数列{an}的公差.
(1)已知数列{an}的前10项和为45,求数列{an}的通项公式;
(2)若bn=
| 1 |
| anan+1 |
| 1 |
| 9 |
| 1 |
| n+9 |
分析:(1)设等差数列{an}的公差为d,由a1,a4,a8成等比数列得到首项和公差的关系,再由数列{an}的前10项和为45列式求出首项和公差,则答案可求;
(2)利用裂项相消法求出数列{bn}的前n项和为Tn,由Tn=
-
可求出数列{an}的公差.
(2)利用裂项相消法求出数列{bn}的前n项和为Tn,由Tn=
| 1 |
| 9 |
| 1 |
| n+9 |
解答:解:设等差数列{an}的公差为d,由a1,a4,a8成等比数列可得,a42=a1•a8.
即(a1+3d)2=a1(a1+7d),
∴a12+6a1d+9d2=a12+7a1d,而d≠0,∴a1=9d.
(1)由数列{an}的前10项和为45,得S10=10a1+
d=45,
即90d+45d=45,故d=
,a1=3,
故数列{an}的通项公式为an=3+(n-1)•
=
(n+8);
(2)bn=
=
(
-
),
则数列{bn}的前n项和为Tn=
[(
-
)+(
-
)+…+(
-
)]
=
(
-
)=
(
-
)=
(
-
)=
-
.
故数列{an}的公差d=1或d=-1.
即(a1+3d)2=a1(a1+7d),
∴a12+6a1d+9d2=a12+7a1d,而d≠0,∴a1=9d.
(1)由数列{an}的前10项和为45,得S10=10a1+
| 10×9 |
| 2 |
即90d+45d=45,故d=
| 1 |
| 3 |
故数列{an}的通项公式为an=3+(n-1)•
| 1 |
| 3 |
| 1 |
| 3 |
(2)bn=
| 1 |
| an•an+1 |
| 1 |
| d |
| 1 |
| an |
| 1 |
| an+1 |
则数列{bn}的前n项和为Tn=
| 1 |
| d |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| a2 |
| 1 |
| a3 |
| 1 |
| an |
| 1 |
| an+1 |
=
| 1 |
| d |
| 1 |
| a1 |
| 1 |
| an+1 |
| 1 |
| d |
| 1 |
| 9d |
| 1 |
| 9d+nd |
| 1 |
| d2 |
| 1 |
| 9 |
| 1 |
| n+9 |
| 1 |
| 9 |
| 1 |
| n+9 |
故数列{an}的公差d=1或d=-1.
点评:本题考查了等差数列的通项公式,考查了利用裂项相消法求数列的和,关键是对数列通项的列项的掌握,是中档题.
练习册系列答案
相关题目