题目内容
(2009山东卷理)(本小题满分12分)设函数f(x)=cos(2x+)+sinx.
(1) 求函数f(x)的最大值和最小正周期.
(2) 设A,B,C为ABC的三个内角,若cosB=,,且C为锐角,求sinA.
解析: (1)f(x)=cos(2x+)+sinx.=
所以函数f(x)的最大值为,最小正周期.
(2)==-, 所以, 因为C为锐角, 所以,
又因为在ABC 中, cosB=, 所以 , 所以
.
练习册系列答案
相关题目
(2009山东卷理)(本小题满分12分)
在某校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为
| 0 | 2 | 3 | 4 | 5 |
p | 0.03 | P1 | P2 | P3 | P4 |
(1) 求q的值;
(2) 求随机变量的数学期望E;
(3) 试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。