ÌâÄ¿ÄÚÈÝ
£¨2009•ÆÕÍÓÇø¶þÄ££©Ä³²Ö¿âΪÁ˱£³Ö¿âÄÚµÄʪ¶ÈºÍζȣ¬ËÄÖÜǽÉϾù×°ÓÐÈçͼËùʾµÄ×Ô¶¯Í¨·çÉèÊ©£®¸ÃÉèÊ©µÄϲ¿ABCDÊǾØÐΣ¬ÆäÖÐAB=2Ã×£¬BC=0.5Ã×£®Éϲ¿CmDÊǸö°ëÔ²£¬¹Ì¶¨µãEΪCDµÄÖе㣮¡÷EMNÊÇÓɵçÄÔ¿ØÖÆÆäÐÎ×´±ä»¯µÄÈý½Çͨ·ç´°£¨ÒõÓ°²¿·Ö¾ù²»Í¨·ç£©£¬MNÊÇ¿ÉÒÔÑØÉèÊ©±ß¿òÉÏÏ»¬¶¯ÇÒʼÖÕ±£³ÖºÍABƽÐеÄÉìËõºá¸Ë£¨MNºÍAB¡¢DC²»Öغϣ©£®
£¨1£©µ±MNºÍABÖ®¼äµÄ¾àÀëΪ1Ã×ʱ£¬Çó´ËʱÈý½Çͨ·ç´°EMNµÄͨ·çÃæ»ý£»
£¨2£©ÉèMNÓëABÖ®¼äµÄ¾àÀëΪxÃ×£¬ÊÔ½«Èý½Çͨ·ç´°EMNµÄͨ·çÃæ»ýS£¨Æ½·½Ã×£©±íʾ³É¹ØÓÚxµÄº¯ÊýS=f£¨x£©£»
£¨3£©µ±MNÓëABÖ®¼äµÄ¾àÀëΪ¶àÉÙÃ×ʱ£¬Èý½Çͨ·ç´°EMNµÄͨ·çÃæ»ý×î´ó£¿²¢Çó³öÕâ¸ö×î´óÃæ»ý£®
£¨1£©µ±MNºÍABÖ®¼äµÄ¾àÀëΪ1Ã×ʱ£¬Çó´ËʱÈý½Çͨ·ç´°EMNµÄͨ·çÃæ»ý£»
£¨2£©ÉèMNÓëABÖ®¼äµÄ¾àÀëΪxÃ×£¬ÊÔ½«Èý½Çͨ·ç´°EMNµÄͨ·çÃæ»ýS£¨Æ½·½Ã×£©±íʾ³É¹ØÓÚxµÄº¯ÊýS=f£¨x£©£»
£¨3£©µ±MNÓëABÖ®¼äµÄ¾àÀëΪ¶àÉÙÃ×ʱ£¬Èý½Çͨ·ç´°EMNµÄͨ·çÃæ»ý×î´ó£¿²¢Çó³öÕâ¸ö×î´óÃæ»ý£®
·ÖÎö£º£¨1£©µ±MNºÍABÖ®¼äµÄ¾àÀëΪ1Ã×ʱ£¬MNӦλÓÚDCÉÏ·½£¬ÇÒ´Ëʱ¡÷EMNÖÐMN±ßÉϵĸßΪ0.5Ã×£¬´Ó¶ø¿ÉÇóMNµÄ³¤£¬ÓÉÈý½ÇÐÎÃæ»ý¹«Ê½ÇóÃæ»ý
£¨2£©µ±MNÔÚ¾ØÐÎÇøÓòÄÚ»¬¶¯£¬¼´x¡Ê(0£¬
)ʱ£¬ÓÉÈý½ÇÐÎÃæ»ý¹«Ê½½¨Á¢Ãæ»ýÄ£ÐÍ£®µ±MNÔÚ°ëÔ²ÐÎÇøÓòÄÚ»¬¶¯£¬¼´x¡Ê(
£¬
)ʱ£¬ÓÉÈý½ÇÐÎÃæ»ý¹«Ê½½¨Á¢Ãæ»ýÄ£ÐÍ£®
£¨3£©¸ù¾Ý·Ö¶Îº¯Êý£¬·Ö±ðÇóµÃÿ¶ÎÉϵÄ×î´óÖµ£¬×îºóÈ¡ËüÃǵ±ÖÐ×î´óµÄ£¬¼´ÎªÔº¯ÊýµÄ×î´óÖµ£¬²¢Ã÷È·È¡ÖµµÄ״̬£¬´Ó¶øµÃµ½Êµ¼ÊÎÊÌâµÄ½¨Éè·½°¸£®
£¨2£©µ±MNÔÚ¾ØÐÎÇøÓòÄÚ»¬¶¯£¬¼´x¡Ê(0£¬
1 |
2 |
1 |
2 |
3 |
2 |
£¨3£©¸ù¾Ý·Ö¶Îº¯Êý£¬·Ö±ðÇóµÃÿ¶ÎÉϵÄ×î´óÖµ£¬×îºóÈ¡ËüÃǵ±ÖÐ×î´óµÄ£¬¼´ÎªÔº¯ÊýµÄ×î´óÖµ£¬²¢Ã÷È·È¡ÖµµÄ״̬£¬´Ó¶øµÃµ½Êµ¼ÊÎÊÌâµÄ½¨Éè·½°¸£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒ⣬µ±MNºÍABÖ®¼äµÄ¾àÀëΪ1Ã×ʱ£¬MNӦλÓÚDCÉÏ·½£¬ÇÒ´Ëʱ¡÷EMNÖÐMN±ßÉϵĸßΪ0.5Ã×£¬ÓÖÒòΪEM=EN=1Ã×£¬ËùÒÔMN=
Ã×£¬ËùÒÔS¡÷EMN=
ƽ·½Ã×£¬¼´Èý½Çͨ·ç´°EMNµÄͨ·çÃæ»ýΪ
ƽ·½Ã×
£¨2£©µ±MNÔÚ¾ØÐÎÇøÓòÄÚ»¬¶¯£¬¼´x¡Ê(0£¬
)ʱ£¬¡÷EMNµÄÃæ»ýS=
¡ÁMN¡Á(
-x)=
-x£»
µ±MNÔÚ°ëÔ²ÐÎÇøÓòÄÚ»¬¶¯£¬¼´x¡Ê(
£¬
)ʱ£¬¡÷EMNµÄÃæ»ýS=(x-
)•
×ÛÉϿɵÃS=f(x)=
£»
£¨3£©µ±MNÔÚ¾ØÐÎÇøÓòÄÚ»¬¶¯Ê±£¬f£¨x£©ÔÚÇø¼ä(0£¬
)Éϵ¥µ÷µÝ¼õ£¬Ôòf£¨x£©£¼f£¨0£©=
£»
µ±MNÔÚ°ëÔ²ÐÎÇøÓòÄÚ»¬¶¯£¬f(x)=(x-
)•
¡Ü
=
µÈºÅ³ÉÁ¢Ê±£¬x=
(
+1)
Òò´Ëµ±x=
(
+1)£¨Ã×£©Ê±£¬Ã¿¸öÈý½ÇÐεõ½×î´óͨ·çÃæ»ýΪ
ƽ·½Ã×£®
3 |
| ||
4 |
| ||
4 |
£¨2£©µ±MNÔÚ¾ØÐÎÇøÓòÄÚ»¬¶¯£¬¼´x¡Ê(0£¬
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2 |
µ±MNÔÚ°ëÔ²ÐÎÇøÓòÄÚ»¬¶¯£¬¼´x¡Ê(
1 |
2 |
3 |
2 |
1 |
2 |
1-(x-
|
×ÛÉϿɵÃS=f(x)=
|
£¨3£©µ±MNÔÚ¾ØÐÎÇøÓòÄÚ»¬¶¯Ê±£¬f£¨x£©ÔÚÇø¼ä(0£¬
1 |
2 |
1 |
2 |
µ±MNÔÚ°ëÔ²ÐÎÇøÓòÄÚ»¬¶¯£¬f(x)=(x-
1 |
2 |
1-(x-
|
(x-
| ||||
2 |
1 |
2 |
1 |
2 |
2 |
Òò´Ëµ±x=
1 |
2 |
2 |
1 |
2 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éº¯ÊýÄ£Ð͵Ľ¨Á¢ÓëÓ¦Óã¬Ö÷ÒªÉæ¼°ÁËÈý½ÇÐÎÃæ»ý¹«Ê½£¬·Ö¶Îº¯ÊýÇó×îÖµÒÔ¼°»ù±¾²»µÈʽ·¨µÈ½âÌâ·½·¨£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿