题目内容

如图所示,矩形ABCD的边AB=a,BC=2,PA⊥平面ABCD,PA=2,现有数据:a=;a=1;a=2;a=;a=4.若在BC边上存在点Q,使PQ⊥QD,则a可以取所给数据中的哪些值?并说明理由.

【答案】分析:建立空间直角坐标系,求出各点的坐标,设出点Q的坐标,进而得到向量PQ,QD的坐标,再结合PQ⊥QD即可求出结论.
解答:解:建立如图所示的空间直角坐标系,则各点坐标分别为:A(0,0,0),B(a,0,0),C(a,2,0),D(0,2,0),P(0,0,2)
设Q(a,x,0)(0≤x≤2),
=(a,x,-2),=(-a,2-x,0),
∴由PQ⊥QD得
∴a2=x(2-x)
∵x∈[0,2],a2=x(2-x)∈(0,1]…
∴在所给数据中,a可取和a=1两个值.
点评:本题考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网