题目内容
若k,-1,b三个数成等差数列,则直线y=kx+b必经过定点
- A.(1,-2)
- B.(1,2)
- C.(-1,2)
- D.(-1,-2)
A
分析:先根据k,-1,b三个数成等差数列可得到k,b的关系,然后领x=1可判断y=k+b=-2,从而即可得到答案.
解答:∵k,-1,b成等差数列,∴k+b=-2.
∴当x=1时,y=k+b=-2.
即直线过定点(1,-2).
故选A.
点评:本题主要考查等差中项的运用、恒过定点的直线.考查基础知识的综合运用.
分析:先根据k,-1,b三个数成等差数列可得到k,b的关系,然后领x=1可判断y=k+b=-2,从而即可得到答案.
解答:∵k,-1,b成等差数列,∴k+b=-2.
∴当x=1时,y=k+b=-2.
即直线过定点(1,-2).
故选A.
点评:本题主要考查等差中项的运用、恒过定点的直线.考查基础知识的综合运用.
练习册系列答案
相关题目