题目内容

设函数f(x)=cos(
3
x+
φ)(0<φ<π),且f(x)+f′(x)为奇函数.
(1)求φ的值;
(2)求f(x)+f′(x)的最值.
分析:(1)由已知利用辅助角公式可得,
f(x)+f'(x)=cos(
3
x+φ)-
3
sin(
3
x+φ)
=2sin(
3
x+φ+
6
)

由f(x)+f'(x)为奇函数,根据奇函数的性质可得,f(0)+f'(0)=0,从而可求φ的值
(2)由(1)得f(x)+f'(x)=2sin(
3
x+π)=-2sin
3
x

,根据正弦函数的性质可求最值
解答:解:(1)f(x)+f'(x)=cos(
3
x+φ)-
3
sin(
3
x+φ)
=2sin(
3
x+φ+
6
)

又f(x)+f'(x)是奇函数,
∴f(0)+f'(0)=0,又0<φ<π,
∴φ=
π
6

(2)由(1)得f(x)+f'(x)=2sin(
3
x+π)=-2sin
3
x

∴f(x)+f'(x)的最大值为2,最小值为-2.
点评:本题主要考查了奇函数的性质:若函数g(x)为奇函数,且0在定义域内,则g(0)=0,利用该性质可以简化运算;三角函数的辅助角公式 的应用,正弦函数的最值的求解.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网