题目内容
11.已知数列{an}满足a1=$\frac{1}{2}$,$\frac{3(1+{a}_{n+1})}{1-{a}_{n}}$=$\frac{2(1+{a}_{n})}{1-{a}_{n+1}}$,anan+1<0,求数列{an}的通项公式.分析 由$\frac{3(1+{a}_{n+1})}{1-{a}_{n}}$=$\frac{2(1+{a}_{n})}{1-{a}_{n+1}}$,可得$\frac{1-{a}_{n+1}^{2}}{1-{a}_{n}^{2}}$=$\frac{2}{3}$,利用等比数列的通项公式可得:${a}_{n}^{2}$=1-$\frac{1}{2}×(\frac{2}{3})^{n-2}$,利用anan+1<0,${a}_{1}=\frac{1}{2}$,即可得出.
解答 解:∵$\frac{3(1+{a}_{n+1})}{1-{a}_{n}}$=$\frac{2(1+{a}_{n})}{1-{a}_{n+1}}$,
∴$\frac{1-{a}_{n+1}^{2}}{1-{a}_{n}^{2}}$=$\frac{2}{3}$,
∴数列$\{1-{a}_{n}^{2}\}$是等比数列,首项为$\frac{3}{4}$,公比为$\frac{2}{3}$.
∴$1-{a}_{n}^{2}$=$\frac{3}{4}×(\frac{2}{3})^{n-1}$=$\frac{1}{2}×(\frac{2}{3})^{n-2}$.
∴${a}_{n}^{2}$=1-$\frac{1}{2}×(\frac{2}{3})^{n-2}$,
∵anan+1<0,${a}_{1}=\frac{1}{2}$,
∴an=$\left\{\begin{array}{l}{\sqrt{1-\frac{1}{2}(\frac{2}{3})^{n-2}},n=2k-1}\\{-\sqrt{1-\frac{1}{2}(\frac{2}{3})^{n-2}},n=2k}\end{array}\right.$,k∈N*.
点评 本题考查了等比数列的通项公式及其性质、分类讨论方法,考查了推理能力与计算能力,属于中档题.
A. | 80 | B. | 90 | C. | 120 | D. | 130 |
A. | B∈A | B. | A⊆B | C. | A=B | D. | A∈B |
A. | f(-1)<f(0)<f(2) | B. | f(2)<f(0)<f(-1) | C. | f(0)<f(-1)<f(2) | D. | f(2)<f(-1)<f(0) |