题目内容
已知的最小值为,则二项式展开式中项的系数为( )
A. | B. | C. | D. |
A
解析试题分析:因为函数的最小值为,即。展开式的通项公式为,由,得,所以,即项的系数为15,选A.
考点:二项式定理,分段函数
点评:主要是考查了分段函数的最值,以及二项式定理的通项公式的运用,属于中档题。
练习册系列答案
相关题目
有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务的不同选法有 ( )
A.1260种 | B.2025种 | C.2520种 | D.5040种 |
4名学生被人大、清华、北大录取,若每所大学至少要录取1名,则共有不同的录取方法( )
A.72种 | B.36种 | C.24种 | D.12种 |
有9 名翻译人员,其中6人只能做英语翻译,2人只能做韩语翻译,另外1人既可做英语翻译也可做韩语翻译.要从中选5人分别接待5个外国旅游团,其中两个旅游团需要韩语翻译,三个需要英语翻译,则不同的选派方法数为()
A.900 | B.800 | C.600 | D.500 |
已知,则( ).
A. | B. | C. | D. |
二项式的展开式中含项的系数为( )
A. | B. | C. | D. |
今有甲乙丙三项任务,甲需2人承担,乙丙各需1人承担,现从10人中选派4人承担这三项任务,不同的选派方法有
A.1260种 | B.2025种 | C.2520种 | D.5054种 |
且,则乘积等于( )
A. | B. | C. | D. |
已知(1+x)(1+x)5的展开式中x2的系数为5,则=
A.-4 | B.-3 | C.-2 | D.-1 |