题目内容
已知,,向量与垂直,则的最大值为 .
已知函数.
(Ⅰ)讨论函数的单调区间.
(Ⅱ)当时,设的两个极值点,恰为的零点,求的最小值.
如图所示的茎叶图记录了甲、乙两组各5名同学的投篮命中次数,乙组记录中有一个数据模糊,无法确认,在图中用表示.
(1)若乙组同学投篮命中次数的平均数比甲组同学的平均数少1,求及乙组同学投篮命中次数的方差;
(2)在(1)的条件下,分别从甲、乙两组投篮命中次数低于10次的同学中,各随机选取一名,求这两名同学的投篮命中次数之和为16的概率.
为了了解800名高三学生是否喜欢背诵诗词,从中抽取一个容量为20的样本,若采用系统抽样,则分段的间隔为( )
A.50 B.60
C.30 D.40
已知:方程有两个不等的正根;:方程表示焦点在轴上的双曲线.
(1)若为真命题,求实数的取值范围;
(2)若“或”为真,“且”为假,求实数的取值范围.
已知点是抛物线上一点,且它在第一象限内,焦点为坐标原点,若,,则此抛物线的准线方程为( )
A. B.
C. D.
双曲线的虚轴长是( )
A.8 B.
C. D.2
双曲线方程为,那么它的离心率为( )
A.2 B.
函数的单调递减区间为( )
A., B.,
C., D.,