ÌâÄ¿ÄÚÈÝ
ÒÑÖªA¡¢D·Ö±ðΪÍÖÔ²E£º=1£¨a£¾b£¾0£©µÄ×󶥵ãÓëÉ϶¥µã£¬ÍÖÔ²µÄÀëÐÄÂÊe=£¬F1¡¢F2ΪÍÖÔ²µÄ×ó¡¢ÓÒ½¹µã£¬µãPÊÇÏ߶ÎADÉϵÄÈÎÒ»µã£¬ÇÒµÄ×î´óֵΪ1£®£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£®
£¨2£©ÊÇ·ñ´æÔÚÔ²ÐÄÔÚÔµãµÄÔ²£¬Ê¹µÃ¸ÃÔ²µÄÈÎÒâÒ»ÌõÇÐÏßÓëÍÖÔ²EºãÓÐÁ½¸ö½»µãA£¬B£¬ÇÒOA¡ÍOB£¨OΪ×ø±êԵ㣩£¬Èô´æÔÚ£¬Çó³ö¸ÃÔ²µÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÉèÖ±ÏßlÓëÔ²C£ºx2+y2=R2£¨1£¼R£¼2£©ÏàÇÐÓÚA1£¬ÇÒlÓëÍÖÔ²EÓÐÇÒ½öÓÐÒ»¸ö¹«¹²µãB1£¬µ±RΪºÎֵʱ£¬|A1B1|È¡×î´óÖµ£¿²¢Çó×î´óÖµ£®
¡¾´ð°¸¡¿·ÖÎö£º£¨1£©ÉèP£¨x£¬y£©£¬F1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬Ôò•=x2+y2-c2£¬PÔÚADÉÏ£¬x2+y2¿´×÷Ï߶ÎADÉϵĵãP£¨x£¬y£©µ½Ôµã¾àÀëµÄƽ·½£¬ËùÒÔPÔÚAµã£¬x2+y2×î´ó£¬a2-c2=1£¬ÓÉ´ËÄÜÇó³öÍÖÔ²·½³Ì1£®
£¨2£©ÓÉÍÖÔ²·½³ÌΪ+y2=1£¬ÉèÔ²ÐÄÔÚÔµãµÄÔ²µÄÒ»ÌõÇÐÏßΪy=kx+t£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®½â·½³Ì×éµÃ£¨1+4k£©2x2+8ktx+4t2-4=0£¬ÒªÊ¹ÇÐÏßÓëÍÖÔ²ºãÓÐÁ½¸ö½»µãA£¬B£¬Ôòʹ¡÷=64k2t2-16£¨1+4k2£©£¨t2-1£©=16£¨4k2-t2+1£©£¾0£®ÓÉ´ËÄÜÇó³ö´æÔÚÔ²ÐÄÔÚÔµãµÄÔ²x2+y2=£¬Ê¹µÃ¸ÃÔ²µÄÈÎÒâÒ»ÌõÇÐÏßÓëÍÖÔ²EºãÓÐÁ½¸ö½»µãA£¬B£®
£¨3£©ÉèÖ±ÏßlµÄ·½³ÌΪy=mx+n£¬ÒòΪֱÏßlÓëÔ²C£ºx2+y2=R2£¨1£¼R£¼2£©ÏàÇÐÓÚA1£¬ÓÉR=£¬Öªn2=R2£¨1+m2£©£¬ÒòΪlÓëÍÖÔ²Ö»ÓÐÒ»¸ö¹«¹²µãB1£¬ËùÒÔ£¬¼´£¨1+4m2£©x2+8mx+4n2-4=0ÓÐΨһ½â£®ÓÉ´ËÈëÊÖÄܹ»µ¼³öµ±R=¡Ê£¨1£¬2£©Ê±|A1B1|È¡µÃ×î´óÖµ£¬×î´óֵΪ1£®
½â´ð£º½â£º£¨1£©ÉèP£¨x£¬y£©£¬F1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬ÆäÖÐc2=a2-b2£¬c£¾0
Ôò=£¨-c-x£¬-y£©£¬=£¨c-x£¬-y£©¡à•=x2+y2-c2
¡ßPÔÚADÉÏ£¬x2+y2¿´×÷Ï߶ÎADÉϵĵãP£¨x£¬y£©µ½Ôµã¾àÀëµÄƽ·½£¬
¡àPÔÚAµã£¬x2+y2×î´ó£¬¡àa2-c2=1£¬
ÓÖe==£¬¡àa2=4£¬b2=1£¬c2=3£¬ÍÖÔ²·½³Ì+y2=1£®
£¨2£©ÓÉ£¨1£©ÖªÍÖÔ²·½³ÌΪ+y2=1£¬
¢ÙÉèÔ²ÐÄÔÚÔµãµÄÔ²µÄÒ»ÌõÇÐÏßΪy=kx+t£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
½â·½³Ì×éµÃx2+4£¨kx+t£©2=4£¬¼´£¨1+4k£©2x2+8ktx+4t2-4=0£¬
ҪʹÇÐÏßÓëÍÖÔ²ºãÓÐÁ½¸ö½»µãA£¬B£¬Ôòʹ¡÷=64k2t2-16£¨1+4k2£©£¨t2-1£©=16£¨4k2-t2+1£©£¾0
¼´4k2-t2+1£¾0£¬¼´t2£¼4k2+1£¬ÇÒ£¬
y1y2=£¨kx1+t£©£¨kx2+t£©=k2x1x2+kt£¨x1+x2£©+t2=-+t2=£¬
Ҫʹ¡Í£¬Ðèʹx1x2+y1y2=0£¬¼´+==0£¬
ËùÒÔ5t2-4k2-4=0£¬¼´5t2=4k2+4ÇÒt2£¼4k2+1£¬¼´4k2+4£¼20k2+5ºã³ÉÁ¢£®
ÓÖÒòΪֱÏßy=kx+tΪԲÐÄÔÚÔµãµÄÔ²µÄÒ»ÌõÇÐÏߣ¬
ËùÒÔÔ²µÄ°ë¾¶Îªr=£¬r2===£¬ËùÇóµÄԲΪx2+y2=£®
¢Úµ±ÇÐÏßµÄбÂʲ»´æÔÚʱ£¬ÇÐÏßΪx=±£¬Óë+y2=1½»Óڵ㣨£¬±£©»ò£¨-£¬±£©Âú×㣮
×ÛÉÏ£¬´æÔÚÔ²ÐÄÔÚÔµãµÄÔ²x2+y2=£®£¬Ê¹µÃ¸ÃÔ²µÄÈÎÒâÒ»ÌõÇÐÏßÓëÍÖÔ²EºãÓÐÁ½¸ö½»µãA£¬B£®
£¨3£©ÉèÖ±ÏßlµÄ·½³ÌΪy=mx+n£¬ÒòΪֱÏßlÓëÔ²C£ºx2+y2=R2£¨1£¼R£¼2£©ÏàÇÐÓÚA1£¬
ÓÉ£¨2£©ÖªR=£¬¼´n2=R2£¨1+m2£©¢Ù£¬ÒòΪlÓëÍÖÔ²Ö»ÓÐÒ»¸ö¹«¹²µãB1£¬
ÓÉ£¨2£©ÖªµÃx2+4£¨mx+n£©2=4£¬¼´£¨1+4m2£©x2+8mx+4n2-4=0ÓÐΨһ½â£¬
Ôò¡÷=64m2n2-16£¨1+4m2£©£¨n2-1£©=16£¨4m2-n2+1£©=0£¬¼´4m2-n2+1=0£¬¢Ú
Óɢ٢ڵôËʱA£¬BÖغÏΪB1£¨x1£¬y1£©µã£¬ÓÉÖÐx1=x2£¬ËùÒÔx12==£¬B1£¨x1£¬y1£©µãÔÚÍÖÔ²ÉÏ£¬ËùÒÔy12=1-x12=
|OB1|2=x12+y12=5-£¬ÔÚÖ±½ÇÈý½ÇÐÎOA1B1ÖУ¬|A1B1|2=|OB1|2-|OA1|2=5--R2=5-£¨+R2£©
ÒòΪ£¨+R2£©¡Ý4µ±ÇÒ½öµ±R=¡Ê£¨1£¬2£©Ê±È¡µÈºÅ£¬ËùÒÔ|A1B1|2¡Ü5-4=1
¼´µ±R=¡Ê£¨1£¬2£©Ê±|A1B1|È¡µÃ×î´óÖµ£¬×î´óֵΪ1£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÓ¦ÓÃÄÜÁ¦£¬¾ßÌåÉæ¼°µ½¹ì¼£·½³ÌµÄÇ󷨼°Ö±ÏßÓëÍÖÔ²µÄÏà¹Ø֪ʶ£¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÉèÖеÄÒþÌõ¼þ£¬Áé»îÔËÓÃÍÖÔ²ÐÔÖÊ£¬ºÏÀíµØ½øÐеȼÛת»¯£®
£¨2£©ÓÉÍÖÔ²·½³ÌΪ+y2=1£¬ÉèÔ²ÐÄÔÚÔµãµÄÔ²µÄÒ»ÌõÇÐÏßΪy=kx+t£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®½â·½³Ì×éµÃ£¨1+4k£©2x2+8ktx+4t2-4=0£¬ÒªÊ¹ÇÐÏßÓëÍÖÔ²ºãÓÐÁ½¸ö½»µãA£¬B£¬Ôòʹ¡÷=64k2t2-16£¨1+4k2£©£¨t2-1£©=16£¨4k2-t2+1£©£¾0£®ÓÉ´ËÄÜÇó³ö´æÔÚÔ²ÐÄÔÚÔµãµÄÔ²x2+y2=£¬Ê¹µÃ¸ÃÔ²µÄÈÎÒâÒ»ÌõÇÐÏßÓëÍÖÔ²EºãÓÐÁ½¸ö½»µãA£¬B£®
£¨3£©ÉèÖ±ÏßlµÄ·½³ÌΪy=mx+n£¬ÒòΪֱÏßlÓëÔ²C£ºx2+y2=R2£¨1£¼R£¼2£©ÏàÇÐÓÚA1£¬ÓÉR=£¬Öªn2=R2£¨1+m2£©£¬ÒòΪlÓëÍÖÔ²Ö»ÓÐÒ»¸ö¹«¹²µãB1£¬ËùÒÔ£¬¼´£¨1+4m2£©x2+8mx+4n2-4=0ÓÐΨһ½â£®ÓÉ´ËÈëÊÖÄܹ»µ¼³öµ±R=¡Ê£¨1£¬2£©Ê±|A1B1|È¡µÃ×î´óÖµ£¬×î´óֵΪ1£®
½â´ð£º½â£º£¨1£©ÉèP£¨x£¬y£©£¬F1£¨-c£¬0£©£¬F2£¨c£¬0£©£¬ÆäÖÐc2=a2-b2£¬c£¾0
Ôò=£¨-c-x£¬-y£©£¬=£¨c-x£¬-y£©¡à•=x2+y2-c2
¡ßPÔÚADÉÏ£¬x2+y2¿´×÷Ï߶ÎADÉϵĵãP£¨x£¬y£©µ½Ôµã¾àÀëµÄƽ·½£¬
¡àPÔÚAµã£¬x2+y2×î´ó£¬¡àa2-c2=1£¬
ÓÖe==£¬¡àa2=4£¬b2=1£¬c2=3£¬ÍÖÔ²·½³Ì+y2=1£®
£¨2£©ÓÉ£¨1£©ÖªÍÖÔ²·½³ÌΪ+y2=1£¬
¢ÙÉèÔ²ÐÄÔÚÔµãµÄÔ²µÄÒ»ÌõÇÐÏßΪy=kx+t£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®
½â·½³Ì×éµÃx2+4£¨kx+t£©2=4£¬¼´£¨1+4k£©2x2+8ktx+4t2-4=0£¬
ҪʹÇÐÏßÓëÍÖÔ²ºãÓÐÁ½¸ö½»µãA£¬B£¬Ôòʹ¡÷=64k2t2-16£¨1+4k2£©£¨t2-1£©=16£¨4k2-t2+1£©£¾0
¼´4k2-t2+1£¾0£¬¼´t2£¼4k2+1£¬ÇÒ£¬
y1y2=£¨kx1+t£©£¨kx2+t£©=k2x1x2+kt£¨x1+x2£©+t2=-+t2=£¬
Ҫʹ¡Í£¬Ðèʹx1x2+y1y2=0£¬¼´+==0£¬
ËùÒÔ5t2-4k2-4=0£¬¼´5t2=4k2+4ÇÒt2£¼4k2+1£¬¼´4k2+4£¼20k2+5ºã³ÉÁ¢£®
ÓÖÒòΪֱÏßy=kx+tΪԲÐÄÔÚÔµãµÄÔ²µÄÒ»ÌõÇÐÏߣ¬
ËùÒÔÔ²µÄ°ë¾¶Îªr=£¬r2===£¬ËùÇóµÄԲΪx2+y2=£®
¢Úµ±ÇÐÏßµÄбÂʲ»´æÔÚʱ£¬ÇÐÏßΪx=±£¬Óë+y2=1½»Óڵ㣨£¬±£©»ò£¨-£¬±£©Âú×㣮
×ÛÉÏ£¬´æÔÚÔ²ÐÄÔÚÔµãµÄÔ²x2+y2=£®£¬Ê¹µÃ¸ÃÔ²µÄÈÎÒâÒ»ÌõÇÐÏßÓëÍÖÔ²EºãÓÐÁ½¸ö½»µãA£¬B£®
£¨3£©ÉèÖ±ÏßlµÄ·½³ÌΪy=mx+n£¬ÒòΪֱÏßlÓëÔ²C£ºx2+y2=R2£¨1£¼R£¼2£©ÏàÇÐÓÚA1£¬
ÓÉ£¨2£©ÖªR=£¬¼´n2=R2£¨1+m2£©¢Ù£¬ÒòΪlÓëÍÖÔ²Ö»ÓÐÒ»¸ö¹«¹²µãB1£¬
ÓÉ£¨2£©ÖªµÃx2+4£¨mx+n£©2=4£¬¼´£¨1+4m2£©x2+8mx+4n2-4=0ÓÐΨһ½â£¬
Ôò¡÷=64m2n2-16£¨1+4m2£©£¨n2-1£©=16£¨4m2-n2+1£©=0£¬¼´4m2-n2+1=0£¬¢Ú
Óɢ٢ڵôËʱA£¬BÖغÏΪB1£¨x1£¬y1£©µã£¬ÓÉÖÐx1=x2£¬ËùÒÔx12==£¬B1£¨x1£¬y1£©µãÔÚÍÖÔ²ÉÏ£¬ËùÒÔy12=1-x12=
|OB1|2=x12+y12=5-£¬ÔÚÖ±½ÇÈý½ÇÐÎOA1B1ÖУ¬|A1B1|2=|OB1|2-|OA1|2=5--R2=5-£¨+R2£©
ÒòΪ£¨+R2£©¡Ý4µ±ÇÒ½öµ±R=¡Ê£¨1£¬2£©Ê±È¡µÈºÅ£¬ËùÒÔ|A1B1|2¡Ü5-4=1
¼´µ±R=¡Ê£¨1£¬2£©Ê±|A1B1|È¡µÃ×î´óÖµ£¬×î´óֵΪ1£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÖ±ÏßÓëԲ׶ÇúÏßµÄ×ÛºÏÓ¦ÓÃÄÜÁ¦£¬¾ßÌåÉæ¼°µ½¹ì¼£·½³ÌµÄÇ󷨼°Ö±ÏßÓëÍÖÔ²µÄÏà¹Ø֪ʶ£¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÉèÖеÄÒþÌõ¼þ£¬Áé»îÔËÓÃÍÖÔ²ÐÔÖÊ£¬ºÏÀíµØ½øÐеȼÛת»¯£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
Èçͼ£¬ÒÑÖªA£¬B·Ö±ðΪÍÖÔ²
+
=1(a£¾b£¾)µÄÓÒ¶¥µãºÍÉ϶¥µã£¬Ö±Ïß l¡ÎAB£¬lÓëxÖá¡¢yÖá·Ö±ð½»ÓÚC£¬DÁ½µã£¬Ö±ÏßCE£¬DFΪÍÖÔ²µÄÇÐÏߣ¬ÔòCEÓëDFµÄбÂÊÖ®»ýkCE?kDFµÈÓÚ£¨¡¡¡¡£©
x2 |
a2 |
y2 |
b2 |
A¡¢¡À
| ||
B¡¢¡À
| ||
C¡¢¡À
| ||
D¡¢¡À
|