题目内容

(04年湖南卷文)(12分)

如图,在底面 是菱形的四棱锥P―ABCD中,∠ABC=600,PA=AC=a,PB=PD=,点E是PD的中点.

(I)证明PA⊥平面ABCD,PB∥平面EAC;

(II)求以AC为棱,EAC与DAC为面的二面角的正切值.

 

解析:(Ⅰ)证法一  因为底面ABCD是菱形,∠ABC=60°,

所以AB=AD=AC=a,  在△PAB中,

由PA2+AB2=2a2=PB2   知PA⊥AB.

同理,PA⊥AD,所以PA⊥平面ABCD.

因为

        

所以  共面.

又PB平面EAC,所以PB//平面EAC.

证法二  同证法一得PA⊥平面ABCD.

连结BD,设BDAC=O,则O为BD的中点.

连结OE,因为E是PD的中点,所以PB//OE.

又PB平面EAC,OE平面EAC,故PB//平面EAC.

(Ⅱ)解  作EG//PA交AD于G,由PA⊥平面ABCD.

知EG⊥平面ABCD.

作GH⊥AC于H,连结EH,则EH⊥AC,∠EHG即为二面角的平面角.

又E是PD的中点,从而G是AD的中点,

所以  

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网