题目内容
若α是锐角,且满足
,则cosα的值为
- A.

- B.

- C.

- D.

B
分析:先根据α是锐角,且满足
求出
的值,再由
根据两角和与差的余弦公式得到最后答案.
解答:由α是锐角,且
可得
,
=
.
故选B.
点评:本题主要考查两角和与差的余弦公式、同角三角函数的基本关系.
分析:先根据α是锐角,且满足
解答:由α是锐角,且
故选B.
点评:本题主要考查两角和与差的余弦公式、同角三角函数的基本关系.
练习册系列答案
相关题目
若α是锐角,且满足sin(α-
)=
,则cosα的值为( )
| π |
| 6 |
| 1 |
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|