题目内容

,则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的( )
A.充分必要条件
B.充分而非必要条件
C.必要而非充分条件
D.既非充分也非必要条件
【答案】分析:由f(-x)=-x3+log2(-x+)=-x3+log2=-x3-log2(x+)=-f(x),知f(x)是奇函数.所以f(x)在R上是增函数,a+b≥0可得af(a)+f(b)≥0成立;若f(a)+f(b)≥0则f(a)≥-f(b)=f(-b)由函数是增函数知a+b≥0成立a+b>=0是f(a)+f(b)>=0的充要条件.
解答:解:f(x)=x3+log2(x+),f(x)的定义域为R
∵f(-x)=-x3+log2(-x+)=-x3+log2
=-x3-log2(x+)=-f(x).
∴f(x)是奇函数
∵f(x)在(0,+∞)上是增函数
∴f(x)在R上是增函数
a+b≥0可得a≥-b
∴f(a)≥f(-b)=-f(b)
∴f(a)+f(b)≥0成立
若f(a)+f(b)≥0则f(a)≥-f(b)=f(-b)由函数是增函数知
a≥-b
∴a+b≥0成立
∴a+b≥0是f(a)+f(b)≥0的充要条件.
点评:本题考查充要条件的判断,解题时要注意单调性的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网